S. SASAO KODAI MATH. J. 6 (1983), 167–173

$\mathcal{E}(X)$ FOR NON-SIMPLY CONNECTED *H*-SPACES

BY SEIYA SASAO

§0. Introduction.

Let X be a path-connected H-space with a unit x_0 and let $\mathcal{E}(X)$ be the group of homotopy classes of homotopy equivalences: $(X, x_0) \rightarrow (X, x_0)$. In the case of X being simply connected, D. M. Sunday, J. R proved that if $\operatorname{rank}(\pi_i(X)) \ge 2$, for some *i*, then $\varepsilon(X)$ contains a non abelian free subgroup (Theorem B-(2) of [3]). In this paper we investigate the case of an associative H-space X being not simply connected and having the homotopy type of a *CW*-complex.

THEOREM A. There exists a splitting exact sequence:

$$\{1\} \longrightarrow \nu^{-1}(1) \longrightarrow \varepsilon(X) \longrightarrow GL(n, Z) \longrightarrow \{1\},\$$

where n is the rank of $\pi_1(X, x_0)$.

Especially, since GL(n, Z) is not of finite rank for $n \ge 2$ we have

COROLLARY. If $rank(\pi_1(X, x_0)) \ge 2$ then $\mathcal{E}(X)$ is not of finite rank.

Next let $\mathcal{E}_H(X)$ be the subgroup of $\mathcal{E}(X)$ consisting of homotopy-homomorphisms (*H*-maps), then we have

THEOREM B. If the natural homomorphism

 $\pi_1(Z(X), x_0) \longrightarrow \pi_1(X, x_0) / Torsion$

is onto, where Z(X) denotes the homotopy-centre of X, then $\mathcal{E}_H(X)$ contains GL(n, Z) as a semi-direct factor.

In addition, if we assume that $\pi_1(X, x_0)$ is torsion free we have

COROLLARY. $\mathcal{E}(X)$ is isomorphic to the direct sum $GL(n, Z) \oplus K(X)$, where K(X) denotes the kernel of the natural representation.

$$\mathcal{E}_H(X) \longrightarrow \operatorname{Aut}(\pi_1(X, x_0)) = GL(n, Z).$$

Received July 7, 1982