A THEOREM ON THE SPREAD RELATION

By Hideharu Ueda

0. Introduction.

Let $u=u_1-u_2$ be nonconstant, where u_1 and u_2 are subharmonic in the plane C. For such a function u, we will write

$$N(r, u) = \frac{1}{2\pi} \int_{-\pi}^{+\pi} u(re^{i\theta}) d\theta.$$

Then the Nevanlinna characteristic of $u = u_1 - u_2$ is defined by

$$T(r) \equiv T(r, u) = N(r, u^{+}) + N(r, u_{2})$$
.

For $b \in (-\infty, +\infty)$ we define

$$\sigma_b(r, u) = |\{\theta; u(re^{i\theta}) > b\}|.$$

(Here, and throughout this note, |E| denotes the one-dimensional Lebesgue measure of the set *E*. Also, θ is understood to vary between $-\pi$ and $+\pi$.) In [4] Baernstein proved the following result

In [4], Baernstein proved the following result.

THEOREM A. Suppose $u=u_1-u_2$ is nonconstant, where u_1 and u_2 are subharmonic in C. Let δ and λ be numbers satisfying

$$\lambda \! > \! 0$$
, $0 \! < \! \delta \! \leq \! 1$, $\frac{4}{\lambda} \sin^{-1} \left(\frac{\delta}{2} \right)^{1/2} \! \leq \! 2\pi$.

Assume there exist $r_0 \ge 0$ and $b \in (-\infty, +\infty)$ such that $r \ge r_0$ implies

$$N(r, u_2) \leq (1-\delta)T(r, u) + O(1)$$

and

(1)
$$\sigma_b(r, u) < \frac{4}{\lambda} \sin^{-1} \left(\frac{\delta}{2}\right)^{1/2}.$$

Then

$$\lim_{r\to\infty}\frac{T(r, u)}{r^{\lambda}}=\alpha$$

Received July 14, 1981