H. UEDA KODAI MATH. J. 6 (1983), 26-36

UNICITY THEOREMS FOR MEROMORPHIC OR ENTIRE FUNCTIONS, II

By Hideharu Ueda

0. Introduction. Let f and g be meromorphic functions. If f and g have the same *a*-points with the same multiplicities, we denote this by $f=a \rightleftharpoons g=a$ for simplicity's sake. And we denote the order of f by ρ_f .

In [5] Ozawa proved the following result.

THEOREM A. Let f and g be entire functions. Assume that ρ_f , $\rho_g < \infty$, $f=0 \rightleftharpoons g=0$, $f=1 \rightleftharpoons g=1$ and $\delta(0, f) > 1/2$. Then $fg\equiv 1$ unless $f\equiv g$.

It is natural to ask whether the order restriction of f and g in Theorem A can be removed or not. In our previous paper [6] we showed the following fact.

THEOREM B. Let f and g be entire functions. Assume that $f=0 \rightleftharpoons g=0$, $f=1 \rightleftharpoons g=1$ and $\delta(0, f) > 5/6$. Then $fg\equiv 1$ unless $f\equiv g$.

In this paper we shall show first that in Theorem A the order restriction of f and g can be removed perfectly.

THEOREM 1. Let f and g be entire functions. Assume that $f=0 \rightleftharpoons g=0$, $f=1 \rightleftharpoons g=1$ and $\delta(0, f) > 1/2$. Then $fg \equiv 1$ unless $f \equiv g$.

In Theorem 1, the estimate " $\delta(0, f) > 1/2$ " is best possible. In fact, consider $f = e^{\alpha}(1-e^{\alpha}), g = e^{-\alpha}(1-e^{-\alpha})$ with a nonconstant entire function α . Then $f = -ge^{3\alpha}, f - 1 = (g-1)e^{2\alpha}$ and $\delta(0, f) = 1/2$. $f \neq g$ and $fg \neq 1$ are evident.

In place of Theorem 1, we prove more generally the following

THEOREM 2. Let f and g be meromorphic functions satisfying $f=0 \rightleftharpoons g=0$, $f=1 \rightrightarrows g=1$ and $f=\infty \rightrightarrows g=\infty$. If

$$\overline{\lim_{r\to\infty}} \frac{N(r, 0, f) + N(r, \infty, f)}{T(r, f)} < 1/2,$$

then $f \equiv g$ or $fg \equiv 1$.

In order to state our second result, we introduce a notation: If k is a positive integer or ∞ , let

Received July 14, 1981