A CLASS NUMBER FORMULA OF IWASAWA'S MODULES

By Takashi Fukuda

§0. Introduction.

Let p be an odd prime number which will be fixed throughout the following. Let k be a finite extension of Q and k_{∞} be the cyclotomic \mathbb{Z}_p -extension kQ_{∞} of k, where Q_{∞} is the unique \mathbb{Z}_p -extension of Q (c.f. [6]). For any $n \ge 0$, let k_n be the unique extension of k in k_{∞} of degree p^n over $k: k = k_0 \subset k_1 \subset \cdots \subset k_{\infty}$, and let $\Gamma_n = \operatorname{Gal}(k_{\infty}/k_n)$. Let A_n be the p-Sylow subgroup of the ideal class group of k_n and D_n be the subgroup of A_n consisting of ideal classes containing ideals $\Pi \mathfrak{P}^{m(\mathfrak{V})}$, where \mathfrak{P} runs over all primes of k_n lying over p and $m(\mathfrak{P}) \in \mathbb{Z}$. Let A'_n be the factor group A_n/D_n (c.f. [6]).

We assume that k is a CM field. Then k_{∞} is also a CM field. Let j denote the complex conjugation of k_{∞} . For any $\mathbb{Z}[\{1, j\}]$ -module M, let

$$M^{-} = \{a \in M | (1+j)a = 0\}$$
.

(0.1) DEFINITION. Let $A_{\infty} = \lim A_n$ and $A_{\infty} = \lim A_n'$, with respect to the natural maps induced from inclusion maps $k_n \rightarrow k_m$ for $m \ge n \ge 0$.

In [3] Greenberg, and in [2] Ferrero and Greenberg have proved that, if k is abelian over Q, then the order of $(A'_{\infty})^{\Gamma_n}$ is finite for any $n \ge 0$. We shall compute its order by using *p*-adic *L*-functions associated to *k* when the degree of *k* over Q is prime to *p*.

In the following, we assume that k is a finite imaginary abelian extension of Q whose degree is prime to p. Let G denote the Galois group $\operatorname{Gal}(k/Q)$ and \hat{G} be its character group $\operatorname{Hom}(G, \overline{Q}_p^{\times})$, where \overline{Q}_p is a fixed algebraic closure of Q_p , We also consider \hat{G} as the set of primitive Dirichlet characters with values in \overline{Q}_p which are associated to the extension k/Q by class field theory. Let ω be the Teichmüller character module p. Take $\phi \in \hat{G}$ with $\phi \neq \omega$ and $\phi(j)$ =-1. Let $L_p(s; \omega \phi^{-1})$ be the *p*-adic *L*-function attached to $\omega \phi^{-1}$. For $\kappa \in 1+pZ_p$ with $\kappa \in 1+p^2Z_p$, using Iwasawa's construction of *p*-adic *L*-functions, we have the unique power series $f(T; \omega \phi^{-1}) \in A_{\phi}$ such that

$$f(\kappa^{s-1}; \omega \phi^{-1}) = L_p(s; \omega \phi^{-1}),$$

where $Z_p[\phi] = Z_p[$ {all values of ϕ }] and $\Lambda_{\phi} = Z_p[\phi][[T]]$. We note that

Received February 25, 1982