KÄHLERIAN METRICS GIVEN BY CERTAIN SMOOTH POTENTIAL FUNCTIONS

By Yoshiyuki Watanabe

§1. Introduction.

As is well known, every Kählerian metric $ds^2 = 2\Sigma g_{\alpha\bar{\beta}} dz_{\alpha} d\bar{z}_{\beta}$ is locally expressible in the form

$$g_{\alpha\bar{\beta}} = \frac{\partial^2 \phi}{\partial z_{\alpha} \partial \bar{z}_{\beta}},$$

with respect to local complex coordinates $\{z_{\alpha}\}$, $\alpha=1, \dots, n$, where $\phi(z, \overline{z})$ is a real valued function of $\{z_{\alpha}, \overline{z}_{\alpha}\}$.

We now consider a Kählerian metric $g_{\alpha\beta}$ with ϕ such that $\phi = f(t)$, $t = \Sigma z_{\alpha} \overline{z}_{\alpha}$, where $t \rightarrow f(t) \in C^{\infty}(R)$. S.S. Eum [1] studied such a Kählerian metric with nonzero constant holomorphic curvature defined in the complex number space C^{n} , and showed it is Fubinian, i.e.,

(1.1)
$$f(t) = \frac{1}{k} \log(kt+b) + c$$
,

where $k \ (\neq 0)$, $b \ (>0)$ and c are constant. A Kählerian manifold with constant holomorphic curvature is harmonic (cf. S. Tachibana [7]). For this reason, the present author [12] studied Kählerian manifolds, which are harmonic. On the other hand, P. F. Klembeck [2] has shown that the complex space C^n admits a complete Kählerian metric h with components

(1.2)
$$h_{\alpha\bar{\beta}} = \frac{\partial^2 f(t)}{\partial z_{\alpha} \partial \bar{z}_{\beta}}, \quad f(t) = \int_0^\infty \frac{1}{r} \log(1+r) dr ,$$

which has strictly positive curvature. The Kählerian manifold (C^n, h) is harmonic at the origin 0 of C^n (cf. § 3). But the scalar curvature is not constant as we can directly compute. Therefore (C^n, h) is not harmonic, because a harmonic Riemannian manifold is Einsteinian (cf. [4]). Thus we are very interested in a Kählerian metric locally expressed in the form

(1.3)
$$g_{\alpha\bar{\beta}} = \frac{\partial^2 f(t)}{\partial z_{\alpha} \partial \bar{z}_{\beta}}, \quad t \to f(t) \in C^{\infty}(R),$$

Received May 25, 1981