L. BROWN AND L. RUBEL KODAI MATH. J. 5 (1982), 132-133

RATIONAL APPROXIMATION AND SWISS CHEESES OF POSITIVE AREA

BY LEON BROWN AND LEE RUBEL

Abstract

Let *J* and *K* be two compact sets in the complex plane such that $K \setminus J$ has zero planar measure. If $R(J) = C(J)$ then $R(K) = C(K)$. This result is used to produce many Swiss cheeses *K* of positive area, for which $R(K)=C(K)$.

For any compact set K in the complex plane, let $C(K)$ and $R(K)$ denote, respectively, the algebra of continuous functions on *K,* and the subalgebra of functions which are uniformly approximable on K by rational functions with poles off K . Hartogs and Rosenthal proved in [2] that if $m_2(K)=0$ (where m_2 denotes planar Lebesgue measure), then $R(K)=C(K)$. We extend this theorem here, and apply it to get new examples of Swiss cheeses K with $R(K)=C(K)$, yet *m² (K)>0.*

THEOREM. Let *J* and *K* be compact sets such that $m_2(K \setminus J)=0$. If $R(J)=$ $C(J)$ then $R(K)=C(K)$.

The proof of this result depends on the following. Let μ be a finite measure with compact support in the complex plane. The Cauchy transform of μ is defined by $\mu^*(w) = |(z-w)^{-1} d\mu(z)|$. It is the convolution of μ with the locally in tegrable function $1/z$. So the integral defining μ ² converges absolutely except for *w* belonging to a set of zero planar measure. Clearly, *μ"* is analytic off the closed support of μ . A converse of this statement is true.

PROPOSITION 1. (See [1], Theorem 8.2.) *Let μ be a finite measure of compact support in the plane. Suppose U is an open set, and f is a function analytic on U such that f=* μ almost everywhere with respect to m ₂ on U. Then $|\mu|(U)=0$.

Proof of Theorem 1. We show that any measure *μ* with support in *K* which is orthogonal to $R(K)$ must be the zero measure. In Proposition 1, set $f \equiv 0$ and *U*=*CJ.* Since $\mu \perp R(K)$, $\mu^2 = 0$ on *CK*. Since $m_2(K \setminus J) = 0$, we have $\mu^2 = f$ almost

¹⁹⁸⁰ Mathematics Subject Classification Numbers 41A20, 30E10.

This research was partially supported by the National Science Foundation. Received October 27, 1980.