L. BROWN AND L. RUBEL KODAI MATH. J. 5 (1982), 132-133

RATIONAL APPROXIMATION AND SWISS CHEESES OF POSITIVE AREA

BY LEON BROWN AND LEE RUBEL

Abstract

Let J and K be two compact sets in the complex plane such that $K \setminus J$ has zero planar measure. If R(J) = C(J) then R(K) = C(K). This result is used to produce many Swiss cheeses K of positive area, for which R(K) = C(K).

For any compact set K in the complex plane, let C(K) and R(K) denote, respectively, the algebra of continuous functions on K, and the subalgebra of functions which are uniformly approximable on K by rational functions with poles off K. Hartogs and Rosenthal proved in [2] that if $m_2(K)=0$ (where m_2 denotes planar Lebesgue measure), then R(K)=C(K). We extend this theorem here, and apply it to get new examples of Swiss cheeses K with R(K)=C(K), yet $m_2(K)>0$.

THEOREM. Let J and K be compact sets such that $m_2(K \setminus J) = 0$. If R(J) = C(J) then R(K) = C(K).

The proof of this result depends on the following. Let μ be a finite measure with compact support in the complex plane. The Cauchy transform of μ is defined by $\mu^{\hat{}}(w) = \int (z-w)^{-1} d\mu(z)$. It is the convolution of μ with the locally integrable function 1/z. So the integral defining $\mu^{\hat{}}$ converges absolutely except for w belonging to a set of zero planar measure. Clearly, $\mu^{\hat{}}$ is analytic off the closed support of μ . A converse of this statement is true.

PROPOSITION 1. (See [1], Theorem 8.2.) Let μ be a finite measure of compact support in the plane. Suppose U is an open set, and f is a function analytic on U such that $f = \mu^{*}$ almost everywhere with respect to m_{2} on U. Then $|\mu|(U)=0$.

Proof of Theorem 1. We show that any measure μ with support in K which is orthogonal to R(K) must be the zero measure. In Proposition 1, set $f \equiv 0$ and U=CJ. Since $\mu \perp R(K)$, $\mu^{2}=0$ on CK. Since $m_{2}(K \setminus J)=0$, we have $\mu^{2}=f$ almost

¹⁹⁸⁰ Mathematics Subject Classification Numbers 41A20, 30E10.

This research was partially supported by the National Science Foundation. Received October 27, 1980.