ON ALMOST CONTACT METRIC COMPOUND STRUCTURE

BY YOSHIHIRO TASHIRO AND IN-BAE KIM

Introduction. K. Yano and U.-H. Ki [8] have recently introduced the notion of $(f, g, u, v, w, \lambda, \mu, \nu)$ -structure in an odd-dimensional manifold M, which is an abstraction of the induced structure in a submanifold of codimension 3 in an almost Hermitian manifold, and studied conditions for such a structure to define an almost contact structure in M and properties of pseudo-umbilical submanifold of codimension 3 satisfying the conditions in a Euclidean space of even-dimension.

In the present paper, we shall introduce in §1 the notion of metric compound structure in a manifold M of dimension m, which is a generalization of $(f, g, u, v, w, \lambda, \mu, \nu)$ and naturally induced in M if M is a submanifold in an almost Hermitian manifold \tilde{M} of dimension n. In §2, we shall seek for conditions in order that a metric compound structure defines an almost contact metric structure in M. After the definition of normality in §3, we shall consider in §4 submanifolds having a normal contact metric compound structure in a Kaehlerian manifold. In §5, we shall disscuss properties and give geometrical characterization of pseudo-umbilical submanifolds in a Euclidean space. In §6, we shall show that a metric compound structure possessing another property gives an almost contact metric structure.

Throughout this paper, we put l=n-m and indices run the following ranges respectively:

 $\kappa, \lambda, \mu, \nu, \dots = 1, 2, \dots, m$, n; $h, i, j, k, \dots = 1, 2, \dots, m$; $p, q, r, s, \dots = m+1, m+2, \dots, n;$ $A, B, C, D, \dots = 1, 2, \dots, m, m+1, \dots, n.$

§1. Metric compound structure

Let \tilde{M} be an *n*-dimensional almost Hermitian manifold and (G, \tilde{F}) the almost Hermitian structure, where G is the almost Hermitian metric and \tilde{F} the almost complex structure of \tilde{M} . We denote by $G_{\lambda\mu}$ and $\tilde{F}_{\lambda}^{\kappa}$ components of G and \tilde{F} with respect to a local coordinate system (x^{κ}) . If $I = (\delta_{\lambda}^{\kappa})$ indicates the identity

Received April 24, 1980.