THE SPECTRUM OF THE LAPLACE OPERATOR FOR A SPECIAL RIEMANNIAN MANIFOLD

By Grigorios Tsagas

1. Introduction. Let (M, g) be a compact orientable Riemannian manifold of dimension *n*. Let $\Lambda^{q}(M)$ be the vector space of exterior *q*-forms on *M*, where $q=0, 1, \dots, n$. We denote by $S_{p}^{q}(M, g)$ the spectrum of Δ on $\Lambda^{q}(M)$.

It was the following open problem. Does $S_p^q(M, g)$ determine the geometry of the Riemannian manifold (M, g)? The answer to this problem in general case is negative. This is a consequence of the counter example which is given in ([3]). If the Riemannian manifold (M, g) is a special one, then problem remains open.

It has been proved ([4]) that the three spectrums $S_p^0(S^n, g_0)$, $S_p^1(S^n, g_0)$ and $S_p^2(S^n, g_0)$ determine completely the geometry of the standard sphere (S^n, g_0) .

One of the results of the present paper is to prove that for each standard sphere (S^n, g_0) there is at least one integer $q \in [0, n]$ such that the spectrum $S_p^q(S^n, g_0)$ determines completely the geometry on the sphere (S^n, g_0) .

In the second paragraph we give some known results for the spectrum of the Laplace operator Δ which acts on the vector space $\Lambda^{q}(M)$, where $q=0, 1, \dots, n$.

The spectrum of the Laplace operator on the $\Lambda^{q}(M)$, when the Riemannian manifold (M, g) has constant sectional curvature different from zero, is studied in the third paragraph.

2. We consider a compact, orientable Riemannian manifold (M, g) of dimension n. Let $\Lambda^{q}(M)$ be the vector space of all exterior q-forms on M, where $q=0, 1, \dots, n$. For q=0, we obtain the set $\Lambda^{0}(M)$ of all differentiable functions on M.

Let $\varDelta = -(d\delta + \delta d)$ be the Laplace operator which acts on the exterior algebra of M

$$\Lambda(M) = \Lambda^{0}(M) \oplus \Lambda^{1}(M) \oplus \dots \oplus \Lambda^{n}(M) = \bigoplus_{q=0}^{n} \Lambda^{q}(M)$$

as follows

$$\varDelta: \Lambda(M) \longrightarrow \Lambda(M) , \quad \varDelta: \Lambda^q(M) \longrightarrow \Lambda^q(M) ,$$

 $\varDelta : \alpha \longrightarrow \varDelta(\alpha) = -(d\delta + \delta d)(\alpha) = -d\delta(\alpha) - \delta d(\alpha), \ \forall \alpha \in \Lambda^q(M) \,.$

Received February 15, 1980