RIEMANNIAN MANIFOLDS ADMITTING A PROJECTIVE VECTOR FIELD

By Hitosi Hiramatu

§1. Introduction.

Let M be a connected Riemannian manifold of dimension n covered by a system of coordinate neighborhoods $\{U; x^h\}$, where, here and in the sequel, the indices h, i, j, k, \cdots run over the range $\{1, 2, \cdots, n\}$ and let $g_{ji}, \{j^h_i\}, \nabla_j, K_{kji}^h, K_{ji}$ and K be respectively the metric tensor, the Christoffel symbols formed with g_{ji} , the operator of covariant differentiation with respect to $\{j^h_i\}$, the curvature tensor, the Ricci tensor and the scalar curvature of M.

A vector field v^h on M is called a projective vector field if it satisfies

(1.1)
$$L_{v}\left\{{}_{j}{}^{h}{}_{i}\right\} = \overline{V}_{j}\overline{V}_{i}v^{h} + v^{k}K_{kji}{}^{h} = \delta_{j}^{h}\rho_{i} + \delta_{i}^{h}\rho_{j}$$

for a certain covariant vector field ρ_i , called the associated covariant vector field of v^h , where L_v denotes the operator of Lie derivation with respect to the vector field v^h . In particular, if ρ_i in (1.1) is zero vector field then the projective vector field v^h is called an affine vector field. When we refer in the sequel to a projective vector field v^h , we always mean by ρ_i the associated covariant vector field appearing in (1.1).

Recently, the present author [1, 2] proved a series of integral inequalities in a compact and orientable Riemannian manifold with constant scalar curvature admitting a projective vector field and then obtained necessary and sufficient conditions for such a Riemannian manifold to be isometric to a sphere.

The purpose of the present paper is to continue the work of the present author [1,2] and to prove the following theorem.

THEOREM A. If a connected, compact, orientable and simply connected Riemannian manifold M with constant scalar curvature K of dimension n>1 admits a non-affine projective vector field v^h , then M is globally isometric to a sphere of radius $\sqrt{n(n-1)/K}$ in the Euclidean (n+1)-space.

In the sequel, we need the following theorem due to Obata [3]. (See also [4].)

THEOREM B. Let M be a complete, connected and simply connected Rieman-

Received July 25, 1979