H. YAMADA KODAI MATH. J. 3 (1980), 341--357

ON THE FIRST BOUNDARY VALUE PROBLEMS FOR SOME DEGENERATE SECOND ORDER ELLIPTIC DIFFERENTIAL EQUATIONS

By Haruki Yamada

§1. Introduction.

Let $\Omega \subset \mathbb{R}^n$ be an bounded open domain with C^{∞} -boundary $\Sigma = \partial \Omega$. We consider the following so called "first boundary value problem".

$$[P] \begin{cases} L(u) \equiv (a^{k_j} u_{x_k})_{x_j} + b^k u_{x_k} + cu = f \quad \text{in } \mathcal{Q}, \\ u|_{\mathcal{L}} = 0, \end{cases}$$

where $u_{x_k} = \partial u/\partial x_k$, etc., and the summation convention such as $(a^{k_j}u_{x_k})_{x_j} = \sum_{k,j=1}^n (a^{k_j}u_{x_k})_{x_j}$ are used. Without loss of generality, we can assume that $a^{k_j} = a^{jk}$ (see the following condition [A.1]). Throughout this paper, we pose the following assumptions:

[A.1]
$$a^{kj}, b^k, c, f \in C^{\infty}(\overline{\Omega})$$
 and real valued.

[A.2]
$$a^{kj}\xi_k\xi_j \ge 0$$
 for all $(x, \xi) \in \overline{\Omega} \times \mathbb{R}^n$.

 $\label{eq:constraint} \texttt{[A.3]} \qquad \qquad c < 0 \,, \qquad c - b^k_{x_k} < 0 \qquad \text{on } \bar{\mathcal{Q}} \,.$

[A.4]
$$a^{kj}\xi_k\xi_j > 0$$
 for all $(x, \xi) \in \Sigma \times (\mathbb{R}^n \setminus 0)$.

Under some additional assumptions for the boundary behavior of the coefficients replaced by [A.4], Kohn-Nirenberg [5], [6] and Oleinik [7], [8] proved several existence, uniqueness and regularity theorems for the problem [P]. For example, from their results we have the following theorem. (see e. g. [8] Chap. I, § 5).

THEOREM 1.1. If in addition to [A.1], [A.2], [A.3], we assume that

[A.5]
$$a^{k_j}\nu_k\nu_j > 0$$
 for all $x \in \Sigma$,

where $\mathbf{v} = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ is the unit normal vector for Σ at x, then for any $f \in C^{\infty}(\overline{\Omega})$, there is a uniquely determined weak solution $u \in L^2(\Omega)$ of [P]. Moreover, there

Received June 5, 1979