HILBERT B(H)-MODULES AND STATIONARY PROCESSES

By Masanao Ozawa

1. Introduction.

In the theory of multivariate or Hilbert space valued stationary processes, the Gram matricial structure of the time domain of processes plays an important role. The Gram matricial structure of q-variate processes forms a module over a ring of all $q \times q$ -matrices with a $q \times q$ -matrix valued inner product, which can be seen as a Hilbert space over a matrix ring but not over the complex number field (cf. Masani [5]). Thus it is desirable to formulate such a structure abstractly free from the underlying probabilistic structure, as Kolmogorov first emphasized in 1940 for the univariate case where unspecified Hilbert spaces are prefered to L^2 -spaces (cf. [4]). The purpose of the present paper is to establish such an abstact concept of the time domain of processes.

In the next section, we shall give definitions of Hilbert B(H)-modules and stationary processes on them. Our definition of a Hilbert B(H)-module is similar to the Paschke's definition [6] of inner product modules over B^* algebras except that we require the range of the inner product, which we call the Gramian, is contained in the trace class. Such a requirement is always satisfied for the setting of q-variate or Hilbert space valued processes, and plays an essential role in our treatment. In Sect. 3 we shall study, in a general setting, positive sesquilinear maps valued in the predual of a W^* algebra, example of which are the Gramian and the operator valued covariance function of stationary processes, and we shall examine the relation with the *-representation and construct a unitary representation which is a module version of Umegaki's construction [10], which are applied to the later sections. In Sect. 4 we shall show that the structure of Hilbert B(H)-modules is completely determined by the power of their modular bases, and that a Fourier expansion by the modular basis and Gramian is possible in a parallel way with one on the usual Hilbert spaces. In Sect. 5 applying a general theorem obtained in Sect. 3, the equivalence of stationary processes on Hilbert B(H)-modules is established by their covariance functions.

The author would like to express his thanks to Professor H. Umegaki for his valuable advices and encouragements.

Received October 25, 1978