S. SASAO AND H. TAKAHASHI KODAI MATH. J. 2 (1979), 139–147

HIGHLY CONNECTED POINCARÉ COMPLEXES

Dedicated to Professor A. Komatu on his 70th birthday

By Seiya Sasao and Hideo Takahashi

Introduction.

We are interested in the following problem proposed by Wall in [2] "Classify up to homotopy (n-1)-connected Poincaré complexes of dimension 2n+1 and 2n+2."

In this paper we shall discuss the case of dimension 2n+2 under some additional conditions. Let K be a Poincaré complex which is (n-1)-connected and of dimension 2n+2. If K has the same rational homology as the sphere, then the homology $H_*(K;Z)$ is as follows

 $H_0(K;Z) = Z = H_{2n+2}(K;Z)$ $H_n(K;Z) = G = H_{n+1}(K;Z)$ $H_i(K;Z) = 0 \quad \text{for other dimensions,}$

where G denotes a finite abelian group. We denote by P(n, n+1; G) the complex K such as above and call it a Poincaré complex of type (n, n+1; G). Then our main results are

THEOREM A. Let $n \ge 3$ and $G \otimes Z_2 = 0$. Then P(n, n+1; G) has the same homotopy type as the connected sum of $P(n, n+1; G_1)$ and $P(n, n+1; G_2)$ if G is a direct sum of G_1 and G_2 .

THEOREM B. Under the same conditions as Theorem A, if P(n, n+1; G) is S-reducible it's homotopy type is unique with respect to n and G.

By applying these theorems to the case of manifolds we shall prove

THEOREM C. Let M be a (n-1)-connected rational homology sphere which is a smooth manifold of dimension 2n+2 with no 2-torsion. Then M is uniquely determined up to homotopy by homology for $n \equiv 0, 1 \mod 4$.

The case of $G \otimes Z_2 \neq 0$ (essencially, G is a 2-group) is more complicated, therefore we shall discuss it in the subsequent paper.

Received October 14, 1977