R. ROSCAKODAI MATH. J.2 (1979), 1-10

ON PARALLEL CONFORMAL CONNECTIONS

BY RADU ROSCA

Riemannian manifolds endowed with a parallel conformal Introduction. connection $\nabla_{p,c}$ have been defined by the present author in [1]. In this paper one studies in the first section a type of such manifolds for which the principal field X associated with $\nabla_{p,c}$ is parallel. In this case X is an infinitesimal homothety of the volume element of M_c and is an invariant section of the cannonical form in the set of 2-frames $\mathcal{O}^2(M_c)$. If M_c is of even dimension 2 m, then the connection $\nabla_{p,c}$ defines on M_c a conformal symplectic form φ and the dual field of the principal l-form α (α is the dual form of X with respect to the metric of M_c) with respect to φ is a Killing field. Finally it is shown that M_c is of constant scalar curvature and is *Ricci flat* in the direction of X. In the second section, making use of some notions introduced by K. Yano and S. Ishihara in [5] and by J. Klein in [7] one studies different properties of the tangent bundle manifold TM_c . Thus the complete lift φ^c of φ , on TM_c is a homogenous form of degree 1 and is also conformal symplectic. If V is the canonical field on TM_c , then the Lie bracket [V, X] is an infinitesimal automorphism of φ^c . Further some properties involving the canonical symplectic form Ω on TM_c (Ω is a Finslerian *form*) and a second conformal symplectic form Θ , which is homogenous of degree 2, are discussed. In the last section one considers a regular mechanical system (in the sense of J. Klein [8]), $\mathcal{M} = \{M_c, T, \pi\}$ such that the *kinetic energy* T is homogenous of degree 2 and the dynamical system Z associated with \mathcal{M} is a spray on M_c .

1. M_c manifold. Let M be an *n*-dimensional C^{∞} -Riemannian manifold and let $\mathcal{O}(M)$ be the bundle of orthonormal frames of M. If $\mathcal{O} \in \mathcal{O}(M)$ is such a frame, let $\{e_i\}$, $\{\omega^i\}$ and $\omega_k^i = \mathcal{J}_{kj}^* \omega^j$, $i, k, j=1, \cdots, n$, be the vectorial and dual basis and the connection forms associated with \mathcal{O} respectively. Then the line element dp $(p \in M)$, the connection equations and the structure equations (E. Cartan) are respectively

$$(1.1) dp = \boldsymbol{\omega}^{i} \otimes \boldsymbol{e}_{i}$$

(1.2)
$$\nabla e_i = \omega_i^k \otimes e_k$$

$$(1.3) d \wedge \omega^i = \Omega^i + \omega^k \wedge \omega_k^i,$$

Received December 8, 1976