J. S. PAK KODAI MATH. J. 1 (1978), 187—196

PLANAR GEODESIC SUBMANIFOLDS IN COMPLEX SPACE FORMS

By Jin Suk Pak

Let M^n and \overline{M}^{n+p} be connected complete Riemannian manifolds of dimension n and n+p respectively. An isometric immersion of M^n into \overline{M}^{n+p} is called a *planar geodesic immersion* when every geodesic in M^n is mapped locally into 2-dimensional totally geodesic submanifold of \overline{M}^{n+p} . When the ambient manifold \overline{M}^{n+p} is a space form of constant curvature \tilde{c} , K. Sakamoto [7] has showed that such an immersion is an isotropic immersion in the sence of B. O'Neill [6] with parallel second fundamental tensor. Using this fact, he reduced planar geodesic immersions of compact rank one symmetric spaces into spheres and obtained

THEOREM A. Let $f: M^n \longrightarrow S^{n+q}(\hat{c})$ be a planar geodesic immersion. Then the simply connected Riemannian covering manifold of M^n is a sphere, a complex projective space, a quaternionic projective space or a Cayley projective plane. The immersion is rigid.

A submanifold M^n of a complex space form $\overline{M}^{n+p}(\tilde{c})$ with constant holomorphic sectional curvature \tilde{c} is called *complex* or *invariant* (resp. *totolly real*) if each tangent space of M^n is mapped into itself (resp. the normal space) by the complex structure of $\overline{M}^{n+p}(\tilde{c})$. A complex submanifold of a Kaehler manifold is also a Kaehler manifold. K. Ogiue [5] has showed that if $M^n(c)$ is a Kaehler submanifold immersed in $\overline{M}^{n+p}(\tilde{c})$ and if the second fundamental form of the immersion is parallel, then either $c=\tilde{c}$ (i. e., $M^n(c)$ is totally geodesic in $\overline{M}^{n+p}(\tilde{c})$) or $c=\tilde{c}/2$, the latter case arising only when $\tilde{c}>0$. Moreover the immersion is rigid. When $\tilde{c} \leq 0$, E. Calabi [1] proved that if $M^n(c)$ is imbedded in $\overline{M}^{n+p}(\tilde{c})$ as a Kaehler submanifold, then $M^n(c)$ is totally geodesic in $\overline{M}^{n+p}(\tilde{c})$.

In this paper we study a planar geodesic immersion $f: M^n \longrightarrow \overline{M}^{n+p}(\tilde{c})$ of a connected complete Riemannian manifold of real dimension n into a complex space form of real dimension n+p with constant holomorphic sectional curvature $\tilde{c} \neq 0$. When the immersion f is complex or totally real, it is an isotropic immersion with parallel second fundamental tensor. Moreover, if the immersion f is totally real and not totally geodesic, we can reduce the immersion to a full, minimal, planar geodesic immersion of M^n into a real projective space $RP^{n+p}(\tilde{c}/4)$ (resp. a real hyperbolic space $H^{n+p}(\tilde{c}/4)$) when $\overline{M}^{n+p}(\tilde{c})$ is a complex projective

Received September 24, 1976.