On pluricanonical maps for threefolds of general type

By Meng CHEN

(Received Sept. 17, 1996)

§1. Introduction

Let X be a nonsingular projective threefold of general type over the complex number field C. It remains open whether there exists an absolute number m(3) such that $\Phi_{|mK_X|}$ is a birational map onto its image when $m \ge m(3)$ for any X. Restricting interest to objects of nonsingular minimal threefolds of general type, Benveniste [1] got m(3) = 9and then Matsuki [9] obtained m(3) = 7. In this paper, we want to show m(3) = 6.

MAIN THEOREM. Let X be a nonsingular projective threefold with nef and big canonical divisor K_X , then the 6-canonical map $\Phi_{|6K_X|}$ is a birational map onto its image.

Throughout this paper, most our notations and terminologies are standard except the following which we are in favour of:

:= — definition;

 \sim_{lin} —linear equivalence;

 \sim_{num} —numerical equivalence.

§2. Proof of the Main Theorem

2.1 Kawamata-Viehweg's vanishing theorem. We will use the vanishing theorem in the following form.

PROPOSITION 2.1 (Theorem 1.2 of [5]). Let X be a nonsingular complete variety, $D \in Div(X) \otimes Q$. Assume the following two conditions:

(1) D is nef and big;

(2) the fractional part of D has the support with only normal crossings.

Then $H^i(X, \mathcal{O}_X(\lceil D \rceil + K_X)) = 0$ for i > 0, where $\lceil D \rceil$ is the minimum integral divisor with $\lceil D \rceil - D \ge 0$.

2.2 Basic formula. Let X be a nonsingular projective threefold. For a divisor $D \in Div(X)$, we have

 $\chi(\mathcal{O}_X(D)) = D^3/6 - K_X \cdot D^2/4 + D \cdot (K_X^2 + c_2)/12 + \chi(\mathcal{O}_X)$

by Riemann-Roch theorem. The calculation shows that

 $\chi(\mathcal{O}_X(D)) + \chi(\mathcal{O}_X(-D)) = -K_X \cdot D^2/2 + 2\chi(\mathcal{O}_X) \in \mathbb{Z},$

therefore $K_X \cdot D^2$ is an even integer, especially K_X^3 is even.

¹⁹⁹¹ Mathematics Subject Classification. 14E05, 14J30.

Key words and phrases. Nonsingular minimal model, pluricanonical map, birationality. The author is supported by NNSFC.