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1. Introduction.

In this paper we establish the existence of global Lipschitz continuous solutions to
the Cauchy problem for the one-dininsional quasilinear wave equation

(1.1) $\partial_{t}^{2}w-\partial_{X}\sigma(\partial_{X}w)+f(w)=0$ ,

for all $(x, t)\in R\cross(O, \infty)$ , with initial conditions

(1.2) $w(x, 0)=w_{0}(x)$ , $\partial_{t}w(x, 0)=w_{1}(x)$ ,

for all $x\in R$ . Here $f$ is a smooth function with $f(O)=0$ and $\sigma$ is a given smooth
function such that $\sigma’(u)\geq\gamma>0(\gamma>0)$ and $u\sigma’’(u)>0$ for $u\neq 0;w_{0}$ and $w_{1}$ are
bounded functions with compact support, $w_{0}$ is also Lipschitz continuous.

This equation models a vibrating string with an elastic extemal positional force and
can also be deduced (at a very formal level) by applying the principle of the “stationary
action” from the Lagrangian density given by

$\mathscr{L}_{1}(w_{t}, w_{X}, w)=\frac{1}{2}\iota d_{t}-\Sigma(w_{X})-F(w)$

where $\Sigma’=\sigma$ and $F’=f$ .
AS an example we can consider the quasilinear Klein-Gordon equation

(1.3) $\partial_{t}^{2}w-\partial_{X}\sigma(\partial_{X}w)+mw=0$ $(m\in R)$

and the quasilinear Sine-Gordon equation

(1.4) $\partial_{t}^{2}w-\partial_{X}\sigma(\partial_{X}w)+\sin w=0$ .

Let us notice that the semilinear versions of the equations (1.3), (1.4) exhibit linear
dispersive waves [Wh], although this behaviour has not yet been analyzed in detail in the
present case.

The Cauchy problem $(1.1)-(1.2)$ will be considered in the following equivalent
formulation. Denote by
(1.5) $u=\partial_{X}w$ , $v=\partial_{t}w$ .
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