Global weak entropy solutions to quasilinear wave equations of Klein-Gordon and Sine-Gordon type

By Pierangelo MARCATI and Roberto NATALINI

(Received Apr. 17, 1995) (Revised May 7, 1996)

1. Introduction.

In this paper we establish the existence of global Lipschitz continuous solutions to the Cauchy problem for the one-dimensional quasilinear wave equation

(1.1)
$$\partial_t^2 w - \partial_x \sigma(\partial_x w) + f(w) = 0,$$

for all $(x,t) \in \mathbf{R} \times (0,\infty)$, with initial conditions

(1.2)
$$w(x,0) = w_0(x), \quad \partial_t w(x,0) = w_1(x),$$

for all $x \in \mathbf{R}$. Here f is a smooth function with f(0) = 0 and σ is a given smooth function such that $\sigma'(u) \ge \gamma > 0$ ($\gamma > 0$) and $u\sigma''(u) > 0$ for $u \ne 0$; w_0 and w_1 are bounded functions with compact support, w_0 is also Lipschitz continuous.

This equation models a vibrating string with an elastic external positional force and can also be deduced (at a very formal level) by applying the principle of the "stationary action" from the Lagrangian density given by

$$\mathscr{L}_1(w_t, w_x, w) = \frac{1}{2}w_t^2 - \Sigma(w_x) - F(w)$$

where $\Sigma' = \sigma$ and F' = f.

As an example we can consider the quasilinear Klein-Gordon equation

(1.3)
$$\partial_t^2 w - \partial_x \sigma(\partial_x w) + mw = 0 \quad (m \in \mathbf{R})$$

and the quasilinear Sine-Gordon equation

(1.4)
$$\partial_t^2 w - \partial_x \sigma(\partial_x w) + \sin w = 0.$$

Let us notice that the semilinear versions of the equations (1.3), (1.4) exhibit linear dispersive waves [Wh], although this behaviour has not yet been analyzed in detail in the present case.

The Cauchy problem (1.1)-(1.2) will be considered in the following equivalent formulation. Denote by

(1.5)
$$u = \partial_x w, \quad v = \partial_t w.$$

Key words and phrases. Klein-Gordon and Sine-Gordon equations, hyperbolic nonhomogeneous systems, shock waves, fractional step approximation, compensated compactness.