# The Cauchy problem for Schrödinger type equations with variable coefficients 

Dedicated to Professor Toshinobu Muramatsu on his 60th birthday

By Kunihiko Kajttani

(Received Oct. 13, 1994)
(Revised Feb. 9, 1996)

## §1. Introduction

In this article we consider the following Cauchy problem in $(0, T) \times \boldsymbol{R}^{n}$,

$$
\begin{align*}
& L[u(t, x)]=f(t, x), \quad(t, x) \in(0, T) \times \boldsymbol{R}^{n} \\
& u(0, x)=u_{0}(x), \quad x \in \boldsymbol{R}^{n}, \tag{1.1}
\end{align*}
$$

where $L[u]=\partial_{t} u-\sqrt{-1} \sum_{j, k} \partial_{j}\left\{a_{j k}(x) \partial_{k} u\right\}-\sum_{j} b_{j}(t, x) \partial_{j} u-c(t, x) u$ and $\partial_{t}=\partial / \partial t$ and $\partial_{j}=\partial / \partial x_{j}$. We assume that $a_{j k}(x)$ belong to $B^{\infty}$ and $b_{j}(t, x), c(t, x)$ are in $C^{0}\left([0, T] ; B^{\infty}\right)$, where $B^{\infty}$ stands for the set of complex valued functions defined in $R^{n}$ whose all derivatives are bounded in $\boldsymbol{R}^{n}$. For a topological space $X$, a non negative integer $k$ and an interval $I$ in $R^{1}$ we denote by $C^{k}(I ; X)$ the set of functions $k$ times continuously differentiable with respect to $t \in I$ in the topology of $X$. Moreover we assume that $a_{j k}(x)=a_{k j}(x)$ are real valued and there is $c_{0}>0$ such that

$$
\begin{equation*}
\sum_{j, k} a_{j k}(x) \xi_{j} \xi_{k} \geq c_{0}|\xi|^{2}, \quad x, \xi \in R^{n} \tag{1.2}
\end{equation*}
$$

Let $T>0$ and $X$ a topological space. We say that the Cauchy problem (1.1) is $X$ well posed in $(0, T)$, if for any $u_{0}$ in $X$ and any $f$ in $C^{0}([0, T] ; X)$ there exists a unique solution $u$ in $C^{0}([0, T] ; X)$ of (1,1).

We shall prove that the Cauchy problem (1.1) is $X$-well posed in ( $0, T$ ) under some assumptions, if we take $X=L^{2}\left(\boldsymbol{R}^{n}\right)$ the set of square integrable functions in $\boldsymbol{R}^{n}$ or $X=H^{\infty}$ the sobolev space in $\boldsymbol{R}^{n}$.

We know a necessary condition in order that the Cauchy problem is $L^{2}$ (resp. $H^{\infty}$ )well posed in $(0, T)$. To state this we need the classical orbit associated to $L$. Put

$$
\begin{equation*}
a_{2}(x, \xi)=\sum_{j, k} a_{j k}(x) \xi_{j} \xi_{k} \tag{1.3}
\end{equation*}
$$

and let $(X(t, y, \eta), \Xi(t, y, \eta))$ be the solution of the following ordinary differential equations

$$
\begin{align*}
& (d / d t) X_{j}(t)=\left(\partial / \xi_{j}\right) a_{2}(X(t), \Xi(t)), \quad X_{j}(0)=y_{j}  \tag{1.4}\\
& (d / d t) \Xi_{j}(t)=-\left(\partial / \partial x_{j}\right) a_{2}(X(t), \Xi(t)), \quad \Xi_{j}(0)=\eta_{j}
\end{align*}
$$

