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\S 1. Introduction

In this article we consider the following Cauchy problem in $(0, T)\cross R^{n}$ ,

$L[u(t, x)]=f(t,x)$ , $(t, x)\in(0, T)\cross R^{n}$

(1.1)
$u(O, x)=u_{0}(x)$ , $xeRn$ ,

where $L[u]= \partial_{t}u-\sqrt{-1}\sum_{j,k}\partial_{j}\{a_{jk}(x)\partial_{k^{\mathcal{U}}}\}-\sum_{j}b_{j}(t, x)\partial_{j}u-c(t, x)u$ and $\partial_{t}=\partial/\partial t$ and
$\partial_{j}=\partial/\partial Xj$ . We assume that $a_{jk}(x)$ belong to $B^{\infty}$ and $b_{j}(t, x),$ $c(t, x)$ are in
$C^{0}([0, T];B^{\infty})$ , where $B^{\infty}$ stands for the set of complex valued functions defined in $R^{n}$

whose all derivatives are bounded in $R^{n}$ . For a topological space $X$ , a non negative
integer $k$ and an interval $I$ in $R^{1}$ we denote by $C^{k}(I;X)$ the set of functions $k$ times
continuously differentiable with respect to $t\in I$ in the topology of $X$ . Moreover we
assume that $ajk(x)=a_{kj}(x)$ are real valued and there is $c_{0}>0$ such that

(1.2)
$\sum_{j,k}a_{jk}(x)\xi_{j}\xi_{k}\geq c_{0}|\xi|^{2}$

, $x,$ $\xi\in R^{n}$ .

Let $T>0$ and $X$ a topological space. We say that the Cauchy problem (1.1) is X-
well posed in $(0, T)$ , if for any $u_{0}$ in $X$ and any $f$ in $C^{0}([0, T];X)$ there exists a unique
solution $u$ in $C^{0}([0, T];X)$ of $(1,1)$ .

We shall prove that the Cauchy problem (1.1) is $X$-well posed in $(0, T)$ under some
assumptions, if we take $X=L^{2}(R^{n})$ the set of square integrable functions in $R^{n}$ or
$X=H^{\infty}$ the sobolev space in $R^{n}$ .

We know a necessary condition in order that the Cauchy problem is $L^{2}$ (resp. $H^{\infty}$ )-

well posed in $(0, T)$ . To state this we need the classical orbit associated to $L$ . Put

(1.3)
$a_{2}(x, \xi)=\sum_{j,k}a_{jk}(x)\xi_{j}\xi_{k}$

and let $(X(t,y, \eta), --(t,y, \eta))$ be the solution of the following ordinary differential
equations

$(d/dt)X_{j}(t)=(\partial/\xi_{j})a_{2}(X(t), --(t))$ , $X_{j}(0)=y_{j}$

(1.4)
$(d/dt)_{-j}^{-}(t)=-(\partial/\partial x_{j})a_{2}(X(t), \Xi(t))$ , $--j(0)=\eta_{j}$ ,


