Boundedness of global solutions of one dimensional quasilinear degenerate parabolic equations

By Ryuichi SUZUKI

(Received Aug. 31, 1994) (Revised Jan. 19, 1996)

1. Introduction.

Let $\Omega = (-L, L)$ be a bounded open interval in **R**. In this paper we shall consider the one-dimensional Dirichlet problem

$$\partial_t \beta(u) = u_{xx} + f(u)$$
 in $(x, t) \in \Omega \times (0, T)$ (1.1)

$$u(\pm L, t) = 0$$
 on $t \in (0, T)$ (1.2)

$$u(x,0) = u_0(x) \quad \text{on } x \in \Omega \tag{1.3}$$

where $\partial_t = \partial/\partial t$ and $\beta(v)$, f(v) with $v \ge 0$ and $u_0(x)$ are nonnegative functions.

Equation (1.1) describes the combustion process in a stationary medium in which the thermal conductivity $\beta'(u)^{-1}$ and the volume heat source f(u) are depending in a nonlinear way on the temperature $\beta(u) = \beta(u(x, t))$ of the medium.

Throughout this paper we assume

(A1) $\beta(v), f(v) \in C^{\infty}(\mathbf{R}_{+}) \cap C(\overline{\mathbf{R}}_{+})$ where $\mathbf{R}_{+} = (0, \infty)$ and $\overline{\mathbf{R}}_{+} = [0, \infty), \beta(v) > 0$, $\beta'(v) > 0, \beta''(v) \le 0$ and f(v) > 0 for $v > 0, \lim_{v \to \infty} \beta(v) = \infty, f \circ \beta^{-1}(v)$ is locally Lipschitz continuous in $v \ge 0$.

(A2) $u_0(x) \ge 0$, $\in C(\overline{\Omega})$ and $u_0(\pm L) = 0$ (compatibility condition).

With these conditions above Dirichlet problem has a unique local solution $u(x,t) \ge 0$ (in time) which satisfies $(1.1) \sim (1.3)$ in a weak sense (e.f.- Aronson-Crandall-Peletier [3], Bertsch-Kersner-Peletier [4], Ladyzenskaja, et al. [11], Oleinik et al. [13]). The definition of "weak" solutions is given in Section 2.

Let s(x) be the principal eigensolution of $-\partial^2/\partial x^2$ in (-L, L) with Dirichlet boundary conditions (s is normalized: s > 0 in Ω , $\int_{\Omega} s(x) dx = 1$) and λ be the first eigenvalue of this problem. We further assume the almost necessary condition to raise the blow-up (see Imai-Mochizuki [9]).

(A3) There exist a continuous function $g(\xi)$ of ξ and a $\xi_1 \ge 0$ such that

$$g(\xi) \le f(\xi) - \lambda \xi \quad \text{in } \xi \ge 0, \tag{1.4}$$

$$\Gamma \equiv g \circ \beta^{-1} \text{ is convex in } (\beta(0), \infty),$$
 (1.5)

Partially supported by Grant-in-Aid for Scientific Research (No. 05640241), Ministry of Education, Science and Culture, Japan.