Boundedness of global solutions of one dimensional quasilinear degenerate parabolic equations

By Ryuichi Suzuki

(Received Aug. 31, 1994)
(Revised Jan. 19, 1996)

1. Introduction.

Let $\Omega=(-L, L)$ be a bounded open interval in \boldsymbol{R}. In this paper we shall consider the one-dimensional Dirichlet problem

$$
\begin{gather*}
\partial_{t} \beta(u)=u_{x x}+f(u) \quad \text { in } \quad(x, t) \in \Omega \times(0, T) \tag{1.1}\\
u(\pm L, t)=0 \quad \text { on } t \in(0, T) \tag{1.2}\\
u(x, 0)=u_{0}(x) \quad \text { on } x \in \Omega \tag{1.3}
\end{gather*}
$$

where $\partial_{t}=\partial / \partial t$ and $\beta(v), f(v)$ with $v \geq 0$ and $u_{0}(x)$ are nonnegative functions.
Equation (1.1) describes the combustion process in a stationary medium in which the thermal conductivity $\beta^{\prime}(u)^{-1}$ and the volume heat source $f(u)$ are depending in a nonlinear way on the temperature $\beta(u)=\beta(u(x, t))$ of the medium.

Throughout this paper we assume
(A1) $\beta(v), f(v) \in C^{\infty}\left(\boldsymbol{R}_{+}\right) \cap C\left(\overline{\boldsymbol{R}}_{+}\right)$where $\boldsymbol{R}_{+}=(0, \infty)$ and $\overline{\boldsymbol{R}}_{+}=[0, \infty), \beta(v)>0$, $\beta^{\prime}(v)>0, \quad \beta^{\prime \prime}(v) \leq 0$ and $f(v)>0$ for $v>0, \lim _{v \rightarrow \infty} \beta(v)=\infty, f \circ \beta^{-1}(v)$ is locally Lipschitz continuous in $v \geq 0$.
(A2) $u_{0}(x) \geq 0, \in C(\bar{\Omega})$ and $u_{0}(\pm L)=0$ (compatibility condition).
With these conditions above Dirichlet problem has a unique local solution $u(x, t) \geq 0$ (in time) which satisfies (1.1)~(1.3) in a weak sense (e.f.- Aronson-CrandallPeletier [3], Bertsch-Kersner-Peletier [4], Ladyzenskaja, et al. [11], Oleinik et al. [13]). The definition of "weak" solutions is given in Section 2.

Let $s(x)$ be the principal eigensolution of $-\partial^{2} / \partial x^{2}$ in $(-L, L)$ with Dirichlet boundary conditions (s is normalized: $s>0$ in $\Omega, \int_{\Omega} s(x) d x=1$) and λ be the first eigenvalue of this problem. We further assume the almost necessary condition to raise the blow-up (see Imai-Mochizuki [9]).
(A3) There exist a continuous function $g(\xi)$ of ξ and a $\xi_{1} \geq 0$ such that

$$
\begin{gather*}
g(\xi) \leq f(\xi)-\lambda \xi \quad \text { in } \xi \geq 0, \tag{1.4}\\
\Gamma \equiv g \circ \beta^{-1} \text { is convex in }(\beta(0), \infty), \tag{1.5}
\end{gather*}
$$

[^0]
[^0]: Partially supported by Grant-in-Aid for Scientific Research (No. 05640241), Ministry of Education, Science and Culture, Japan.

