Solutions of the Dirichlet problem on a cone with continuous data

Dedicated to Professor Yasuo Okuyama on his 60th birthday
By Hidenobu Yoshida and Ikuko Miyamoto
(Received Aug. 10, 1995)
(Revised Dec. 25, 1995)

1. Introduction

Let \boldsymbol{R} and \boldsymbol{R}_{+}be the set of all real numbers and all positive real numbers, respectively. The boundary and the closure of a set S in the n-dimensional Euclidean space $R^{n}(n \geq 2)$ are denoted by ∂S and \bar{S}, respectively. We also introduce the spherical coordinates $(r, \Theta), \Theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n-1}\right)$, in \boldsymbol{R}^{n} which are related to the cartesian coordinates $(X, y), X=\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$ by the formulas

$$
x_{1}=r\left(\prod_{j=1}^{n-1} \sin \theta_{j}\right) \quad(n \geq 2), \quad y=r \cos \theta_{1},
$$

and if $n \geq 3$,

$$
x_{n+1-k}=r\left(\prod_{j=1}^{k-1} \sin \theta_{j}\right) \cos \theta_{k} \quad(2 \leq k \leq n-1),
$$

where

$$
0 \leq r<\infty, 0 \leq \theta_{j} \leq \pi(1 \leq j \leq n-2 ; n \geq 3), \quad-2^{-1} \pi<\theta_{n-1} \leq 2^{-1} 3 \pi .
$$

The unit sphere (the unit circle, if $n=2$) and the upper half unit sphere $\left\{\left(1, \theta_{1}, \theta_{2}, \ldots, \theta_{n-1}\right) \in \boldsymbol{R}^{n} ; 0 \leq \theta_{1}<\pi / 2\right\}$ (the upper half unit circle $\left\{\left(1, \theta_{1}\right) \in \boldsymbol{R}^{2}\right.$; $\left.-\pi / 2<\theta_{1}<\pi / 2\right\}$, if $n=2$) in \boldsymbol{R}^{n} are denoted by \boldsymbol{S}^{n-1} and \boldsymbol{S}_{+}^{n-1}, respectively. The half-space (the half-plane, if $n=2$)

$$
\left\{(X, y) \in \boldsymbol{R}^{n} ; X \in \boldsymbol{R}^{n-1}, y>0\right\}=\left\{(r, \Theta) \in \boldsymbol{R}^{n} ; \Theta \in \boldsymbol{S}_{+}^{n-1}, 0<r<\infty\right\}
$$

is denoted by \boldsymbol{T}_{n}.
Given a domain $D \subset R^{n}$ and a continuous function g on ∂D, we say that h is a solution of the (classical) Dirichlet problem on D with g, if h is harmonic in D and

$$
\lim _{P \in D, P \rightarrow Q} h(P)=g(Q)
$$

for every $Q \in \partial D$. If D is a smooth bounded domain, then the existence of a solution of the Dirichlet problem and its uniqueness is completely known (see e.g. [11, Theorem 5.21]). When D is the typical unbounded domain T_{n}, Helms [13, p. 42 and p.158] states that even if $g(x)$ is a bounded continuous function on $\partial \boldsymbol{T}_{n}$, the solution of the Dirichlet

