On commutativity of diagrams of type Π_{1} factors

By Jerzy Wierzbicki*

(Received Nov. 21, 1994)
(Revised Oct. 30, 1995)

1. Introduction

The subject of our study is quadruple of von Neumann algebras with inclusion
\square
relations as indicated in the diagram $\cup \cup$. In addition, we assume that $S \subset R$ $R \not \subset Q$ and $Q \not \subset R$. When the von Neumann algebra K is equipped with a finite trace τ and E_{Q}^{K}, E_{R}^{K}, and E_{S}^{K} are τ-preserving conditional expectations of K onto Q, R and S, respectively, then a special situation may occur:

$$
E_{Q}^{K} E_{R}^{K}=E_{R}^{K} E_{Q}^{K}=E_{S}^{K}
$$

Then the diagram $\begin{aligned} & Q \\ & \cup \\ & S\end{aligned} \subset \quad \begin{aligned} & K \\ & \\ & S\end{aligned}$ is called a commuting square. In the special case, when $S=C$, the subalgebras Q and R were called orthogonal by \mathbf{S}. Popa ($[\mathbf{P} 1]$). This case, in the classical probability theory, corresponds to the condition of independence of two σ-fields.

Such diagrams were first introduced and investigated by S. Popa (cf. $[\mathbf{P} 1],[\mathbf{P} 2]$) and, at present, this concept is linked in a natural way with numerous problems of subfactor theory. See, for example, [GHD], [K], [P3], [P4], [P5], [PP1], [We], [S], [Su], [SW], [WW], [Wi].

Everywhere in this work, the von Neumann algebras, which form such a diagram are type Π_{1} factors. This situation was studied by S. Popa in $[\mathbf{P} 3]$ and by T. Sano and Y. Watatani in [SW].

In Sections 3 and 4 we discuss sufficient conditions for the commutativity of a diagram. It may seem a little surprising that for certain inclusions, say $S \subset Q$, the $Q \subset K$
diagram $\underset{S}{U} \quad \cup$ of type Π_{1} factors with $[K: S]<\infty$ and $S^{\prime} \cap K=C$ must be a $S \subset R$ commuting square. We will show several results of this kind.

The notion of commuting square of type Π_{1} factors is strictly connected to the concept of so called co-commuting square of type Π_{1} factors, which will be described in

[^0]
[^0]: 1991 Mathematics Subject Classification. Primary 46L37.
 *Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo 060, Japan.

