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1. Introduction and statement of the result.

We consider a smooth affine curve $C’=\{f(x, y)=0\}\subset C^{2}$ of degree $n$ with
one place at infinity, say at $\rho=[1;0;O]\in P^{2}$ and let $g$ be the genus of the
smooth compactification of $C^{a}$ . By the assumption that $C^{a}$ has one place at
infinity, the Newton diagram of the polynomial $f(x, y)$ has only one outside
boundary and the corresponding face function has only one factor. As this
place is assumed to be at $\rho,$ $f(x, y)$ is written as

(1.1) $f(x, y)=(y^{a_{1}}+\xi_{1}x^{c_{1}})^{A_{2}}+$ ($1ower$ terms), $\xi_{1}\in C^{*},$ $c_{1}<a_{1},$ $n=a_{1}A_{2}$

where $a_{1},$ $c_{1},$
$A_{2}$ are integers and $gcd(a_{1}, c_{1})=1$ .

If $c_{1}=1$ , we can take the change of affine coordinates: $x’=y^{a_{1}}+\xi_{1}x,$ $y’=y$

so that the degree of $\deg f’(x’, y’):=f(\xi_{1}^{-1}(x’-y^{\prime a_{1}}), y’)$ is strictly less than $n$ .
We say $C^{a}$ is minimal if $c_{1}\geqq 2$ .

The purpose of this note is to classify the possible normal forms of $f(x, y)$

for a minimal smooth curve with one place at infinity of a given genus $g$ ,
which we call the generalized Abhyankar-Moh Problem or G. A. $M$-problem.
Abhyankar-Moh and Suzuki independently studied the case $g=0([3], [12])$ and
they showed that $C^{a}$ is isomorphic to a line. The case $g\leqq 3$ is studied by
A’Campo-Oka in [4] as an application of a Tschirnhausen resolution tower and
we essentially follow their treatment. There also exists a work of D. W.
Neumann ([9]) for $g\leqq 4$ from the viewpoint of the link at infinity.

Let $C$ be the closure of $C^{a}$ in $P^{2}$ . Recall that the homogeneous polynomial
$F(X, Y, Z):=f(X/Z, Y/Z)Z^{n}$ defines the projective curve $C$ in $P^{2}$ and $F(X, Y, Z)$

is written as
$F(X, Y, Z)=(Y^{a_{1}}+\xi_{1}X^{c_{1}}Z^{b_{1}})^{Ag}+$ ($1ower$ terms), $b_{1}=a_{1}-c_{1},$ $n=a_{1}A_{2}$

In the affine space $U_{0}$ $:=P^{2}-\{X=0\}$ with the affine coordinates $u=Z/X,$ $v=Y/X$,
$C\cap U_{0}$ is defined by $\{(u, v)\in C^{2} ; h(u, v)=0\}$ where
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