Smooth plane curves with one place at infinity

By Yuji NaKaZawa and Mutsuo OKa

(Received Aug. 7, 1995)

1. Introduction and statement of the result.

We consider a smooth affine curve $C^{a}=\{f(x, y)=0\} \subset C^{2}$ of degree n with one place at infinity, say at $\rho=[1 ; 0 ; 0] \in \boldsymbol{P}^{2}$ and let g be the genus of the smooth compactification of C^{a}. By the assumption that C^{a} has one place at infinity, the Newton diagram of the polynomial $f(x, y)$ has only one outside boundary and the corresponding face function has only one factor. As this place is assumed to be at $\rho, f(x, y)$ is written as

$$
\begin{equation*}
f(x, y)=\left(y^{a_{1}}+\xi_{1} x^{c_{1}}\right)^{A_{2}}+(\text { lower terms }), \quad \xi_{1} \in C^{*}, c_{1}<a_{1}, n=a_{1} A_{2} \tag{1.1}
\end{equation*}
$$

where a_{1}, c_{1}, A_{2} are integers and $\operatorname{gcd}\left(a_{1}, c_{1}\right)=1$.
If $c_{1}=1$, we can take the change of affine coordinates: $x^{\prime}=y^{a_{1}}+\xi_{1} x, y^{\prime}=y$ so that the degree of $\operatorname{deg} f^{\prime}\left(x^{\prime}, y^{\prime}\right):=f\left(\xi_{1}^{-1}\left(x^{\prime}-y^{\prime a_{1}}\right), y^{\prime}\right)$ is strictly less than n. We say C^{a} is minimal if $c_{1} \geqq 2$.

The purpose of this note is to classify the possible normal forms of $f(x, y)$ for a minimal smooth curve with one place at infinity of a given genus g, which we call the generalized Abhyankar-Moh problem or G.A.M-problem. Abhyankar-Moh and Suzuki independently studied the case $g=0$ ($[3],[12]$) and they showed that C^{a} is isomorphic to a line. The case $g \leqq 3$ is studied by A'Campo-Oka in [4] as an application of a Tschirnhausen resolution tower and we essentially follow their treatment. There also exists a work of D.W. Neumann ([9]) for $g \leqq 4$ from the viewpoint of the link at infinity.

Let C be the closure of C^{a} in \boldsymbol{P}^{2}. Recall that the homogeneous polynomial $F(X, Y, Z):=f(X / Z, Y / Z) Z^{n}$ defines the projective curve C in P^{2} and $F(X, Y, Z)$ is written as

$$
F(X, Y, Z)=\left(Y^{a_{1}}+\xi_{1} X^{c_{1}} Z^{b_{1}}\right)^{A_{2}}+(\text { lower terms }), \quad b_{1}=a_{1}-c_{1}, n=a_{1} A_{2}
$$

In the affine space $U_{0}:=\boldsymbol{P}^{2}-\{X=0\}$ with the affine coordinates $u=Z / X, v=Y / X$, $C \cap U_{0}$ is defined by $\left\{(u, v) \in \boldsymbol{C}^{2} ; h(u, v)=0\right\}$ where

[^0]
[^0]: The second author is partially supported by Inamori foundation.

