Totally geodesic boundaries are dense in the moduli space

By Michihiko FUJII and Teruhiko SOMA

(Received June 29, 1995)

Let F be a closed, oriented surface such that the genus of each component of F is greater than 1. In this paper, we will study the subset $\Re(F)$ of the moduli space $\mathscr{M}(F)$ such that a hyperbolic structure $s \in \mathscr{M}(F)$ is an element of $\Re(F)$ if there exists a compact, connected, oriented hyperbolic 3-manifold Mwith totally geodesic boundary and admitting an orientation-preserving isometry $\varphi: \partial M \to F(s)$, where ∂M is assumed to have the orientation induced naturally from that on M. Note that $\Re(F)$ is a countable subset of $\mathscr{M}(F)$.

First, consider the special case where F consists of two components each of which is homeomorphic to a given closed surface Σ of genus >1. In Fujii [3], it is implicitly seen that, for any $s \in \mathcal{M}(\Sigma)$, one can construct a compact, connected, oriented, hyperbolic 3-manifold M with totally geodesic, two-component boundary such that one component is arbitrarily close to $\Sigma(s)$ in $\mathcal{M}(\Sigma)$ and the other is to $\Sigma(\bar{s})$ (see Lemma 1 in §2 for the explicit proof based on the circle-packing argument in Brooks [2]). Here, $\bar{s} \in \mathcal{M}(\Sigma)$ denotes the hyperbolic structure on Σ admitting an orientation-reversing isometry $\varphi: \Sigma(s) \to \Sigma(\bar{s})$. This implies that the closure of $\mathcal{R}(F)$ in $\mathcal{M}(F)$ contains the skew diagonal $\Delta_{\text{skew}}(\Sigma) = \{(s, \bar{s}); s \in \mathcal{M}(\Sigma)\}$ of $\mathcal{M}(F) = \mathcal{M}(\Sigma) \times \mathcal{M}(\Sigma)$.

In this paper, we will consider a more general case and prove the following theorem.

THEOREM. Suppose that $F = \Sigma_1 \sqcup \cdots \sqcup \Sigma_t$ is any closed, oriented surface such that the genus of each component Σ_i is greater than 1. Then, $\Re(F)$ is dense in $\mathcal{M}(F) = \mathcal{M}(\Sigma_1) \times \cdots \times \mathcal{M}(\Sigma_t)$.

McMullen's results in [9], [10] play important roles in our proof of Theorem. Especially, the argument in [10] for skinning maps is well applicable to construct a compact, connected, hyperbolic 3-manifold M by joining "long" hyperbolic 3-manifolds associated to any $s_i \in \mathcal{M}(\Sigma_i)$ $(i=1, \dots, t)$ so that ∂M is totally geodesic and arbitrarily close to $\Sigma_1(s_1) \sqcup \cdots \sqcup \Sigma_t(s_t)$ in $\mathcal{M}(F)$.

We would like to thank W. Thurston for his suggestion which directs our attention to McMullen's works.