Existence of curves of genus three on a product of two elliptic curves

By Hisao Yoshitara

(Received June 13, 1995)

1. Introduction.

Let E be an elliptic curve over the field of complex numbers, and let A be the abelian surface $E \times E$. It seems interesting to study if A contains a smooth curve of genus g. In the case when $g=2$, Hayashida and Nishi [3] studied this subject. Their aim was to determine if a product of two elliptic curves can be a Jacobian variety of some curve. In this note we will consider the case when $g=3$. Our first aim is to determine if A has a (1,2)-polarization which is not a product one ($[1]$). Second one is as follows: for an algebraic variety V, the degree of irrationality $d_{r}(V)$ has been introduced in [4] or [7]. Especially we take an interest in the value $d_{r}(A)$ for an abelian surface A. Concerning this we have shown that $d_{r}(A)=3$ if an abelian surface A contains a smooth curve of genus 3 ([5]).

On the other hand the following assertion has been obtained ([8]):
Let n be a positive square free integer. Put $\omega=\sqrt{-n}[$ resp. $\{1+\sqrt{-n}\} / 2]$ if $-n \equiv 2$ or $3(\bmod 4)[$ resp. $-n \equiv 1(\bmod 4)]$. Let $K=\boldsymbol{Q}(\sqrt{-n})$ be an imaginary quadratic field. For each $\xi \in K \backslash \boldsymbol{Q}$, let $a \xi^{2}+b \xi+c=0$ be the equation of ξ satisfying that $a, b, c \in \boldsymbol{Z}, a>0$ and $(a, b, c)=1$. Let L be the lattice generated by $\{1, \xi\}$ and let E be the elliptic curve \boldsymbol{C} / L.

Proposition 1. Under the situation above, suppose that at least one of a, b, c is an even number. Then there exist two elliptic curves E_{1} and E_{2} on $A=E \times E$ satisfying (E_{1}, E_{2})=2, where (E_{1}, E_{2}) denotes the intersection number of E_{1} and E_{2}. Especially there exists a nonsingular curve of genus 3 on A, hence $d_{r}(A)=3$.

Remark 2. Of course there are many elliptic curves E satisfying the condition in this proposition. In fact, if $-n \equiv 2$ or $3(\bmod 4)$, then b is even, because $a \xi$ becomes an integer. Hence every ξ enjoys the condition. For the remainder case, letting k and $l(\neq 0)$ be rational integers, we have the following.

[^0]
[^0]: This research was partially supported by Grant-Aid for Scientific Research (No. 07640025), Ministry of Education, Science and Culture, Japan.

