K-spherical representations for Gelfand pairs associated to solvable Lie groups

By Katsuhiko KIKUCHI

(Received June 1, 1995)

Introduction.

Let S be a connected and simply connected unimodular solvable Lie group, K a connected compact group acting on S as automorphisms. We call the pair (K; S) a Gelfand pair if the Banach *-algebra $L^1(K \setminus K \ltimes S/K)$ of all K-biinvariant integrable functions on $K \ltimes S$ is commutative. The assumption that (K; S) is a Gelfand pair prescribes the structure of S. For example, if (K; S) is a Gelfand pair, then S is of type R ([**BJR**], Corollary 7.4) and thus S has polynomial growth ([**J**], Theorem 1.4). In this paper we first show that the nilradical N of S splits in S if (K; S) is a Gelfand pair. Let § be the Lie algebra of S.

THEOREM A. If (K; S) is a Gelfand pair, then there exists a K-invariant abelian subspace a of β on which K acts trivially. Moreover putting $A = \exp a$, one has $S = A \ltimes N$ and $K \ltimes S = (K \times A) \ltimes N$.

Suppose that (K; S) is a Gelfand pair. Since S has polynomial growth, the Banach *-algebra $L^1(S)$ is symmetric ([L], Lemma 1). This fact tells us that all bounded K-spherical functions on S are positive definite (cf. [**BJR**], Lemma 8.2). Thus to each bounded K-spherical function on S there corresponds an irreducible K-spherical representation of $K \ltimes S$ (cf. [**H**], Chapter IV). Let \hat{N} be the unitary dual of N and K_{π} the stabilizer of $\pi \in \hat{N}$ in K. As an immediate consequence of Theorem A, we see that bounded K-spherical functions ϕ on S are parametrized as $\phi_{\pi,\alpha,a}$ with $(\pi, \alpha, a) \in \hat{N}/K \times \hat{K}_{\pi} \times \mathfrak{a}^*$. This parametrization improves that of [**BJR**], Theorem 8.11 a little in the sense that we make an explicit use of the subgroup $A = \exp \mathfrak{a}$.

Our second purpose of this paper is to realize the irreducible K-spherical representations $\tilde{U}_{\pi,\alpha,a}$ of $K \ltimes S$ by induction using the structure of $K \ltimes S = (K \times A) \ltimes N$, to which the parameters (π, α, a) are closely related. Though S need not be of type I, Theorem A makes it possible to get all irreducible unitary representations of $K \ltimes S$ from those of the nilradical N which is CCR. To carry out this, we need to know that N is regularly imbedded in $K \ltimes S$ and what is the structure of the stabilizers like. Our Proposition 3.2 says that the $(K \times A)$ -orbit space $\hat{N}/(K \times A)$ is equal to the K-orbit space \hat{N}/K as Borel spaces, which