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1. Introduction and statements of results.

Given a path-connected space $X$, we write

$QH^{n}(X;K)= \tilde{H}^{n}(X;K)/\{\sum_{i}\tilde{H}^{i}(X;K)\cdot\tilde{H}^{n-i}(X;K)\}$

for $K=Z,$ $Q$ .
If $G$ is a connected Lie group, then the $k$ -fold product kid of the identity

map of $G$ satisfies $(^{k}id)^{*}(x)=kx$ for all $x\in QH^{*}(G;Q)$ . This property was
important in [5]. Apart from extending Haibao’s results on $H$-spaces to more
general spaces, the following problem seems interesting in its own sense.

PROBLEM. thven a function $\theta$ : $\{1, 2, \cdots\}arrow Z$, is there a self map $\mu_{\theta}$ of $X$

such that

(1.1) $\mu_{\theta}^{*}(x)=\theta(\deg(x))x$ for all homogeneous elements $x\in QH^{*}(X;Q)$ ?

DEFINITION. We call a Path-connected space $X$ an $M_{\theta^{-}}space$ if it has a
self map $\mu_{\theta}$ , which is called an $M_{\theta}$ -structure on $X$, satisfying (1.1).

When $\theta$ is the constant function to $k\in Z$, we denote $M_{\theta}$ and $\mu_{\theta}$ by $M_{k}$

and $\mu_{k}$ , respectively. When there exist an integer $k$ and a function $e:\{1, 2, \}$

$arrow\{0,1,2, \cdots\}$ with $\theta(n)=k^{e(n)}$ for all $n\geqq 1$ , we denote $M_{\theta}$ and $\mu_{\theta}$ by $M_{k^{e}}$ and
$\mu_{\iota^{e}}$ , respectively. Note that every path-connected space is an $M_{0}$ and $M_{1}$ space.

We shall need some finiteness condition on $X$ . That is, we will frequently
assume some of the following:

(1.2) $H_{n}(X;Z)$ is finitely generated for all $n$ ;

(1.3) $\dim H_{n}(X;Q)<\infty$ for all $n$ ;

(1.4) $\dim H^{*}(X;Q)<\infty$ ;

(1.5) $\dim QH^{*}(X;Q)<\infty$ ;


