J. Math. Soc. Japan Vol. 49, No. 3, 1997

Self maps of spaces

Dedicated to Professor Tsuyoshi Watabe on his sixtieth birthday

By Yutaka HEMMI, Kaoru MORISUGI and Hideaki ÖSHIMA

(Received May 18, 1995)

1. Introduction and statements of results.

Given a path-connected space X, we write

$$QH^{n}(X; \mathbf{K}) = \widetilde{H}^{n}(X; \mathbf{K}) / \left\{ \sum_{i} \widetilde{H}^{i}(X; \mathbf{K}) \cdot \widetilde{H}^{n-i}(X; \mathbf{K}) \right\}$$

for K = Z, Q.

If G is a connected Lie group, then the k-fold product ${}^{k}id$ of the identity map of G satisfies $({}^{k}id){}^{*}(x) = kx$ for all $x \in QH^{*}(G; Q)$. This property was important in [5]. Apart from extending Haibao's results on H-spaces to more general spaces, the following problem seems interesting in its own sense.

PROBLEM. Given a function $\theta : \{1, 2, \dots\} \rightarrow \mathbb{Z}$, is there a self map μ_{θ} of X such that

(1.1) $\mu_{\theta}^{*}(x) = \theta(\deg(x))x$ for all homogeneous elements $x \in QH^{*}(X; Q)$?

DEFINITION. We call a path-connected space X an M_{θ} -space if it has a self map μ_{θ} , which is called an M_{θ} -structure on X, satisfying (1.1).

When θ is the constant function to $k \in \mathbb{Z}$, we denote M_{θ} and μ_{θ} by M_k and μ_k , respectively. When there exist an integer k and a function $e: \{1, 2, \dots\}$ $\rightarrow \{0, 1, 2, \dots\}$ with $\theta(n) = k^{e(n)}$ for all $n \ge 1$, we denote M_{θ} and μ_{θ} by M_{k^e} and μ_{k^e} , respectively. Note that every path-connected space is an M_{θ} and M_1 space.

We shall need some finiteness condition on X. That is, we will frequently assume some of the following:

- (1.2) $H_n(X; \mathbb{Z})$ is finitely generated for all n;
- (1.3) $\dim H_n(X; \mathbf{Q}) < \infty \quad \text{for all } n;$
- (1.4) $\dim H^*(X; \mathbf{Q}) < \infty;$
- (1.5) $\dim QH^*(X; \mathbf{Q}) < \infty;$