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Introduction.

Let $X$ be a smooth projective variety over $C$ with $\dim X=n$ , and $L$ an
ample (resp. a nef and big) Cartier divisor. Then (X, $L$ ) is called a polarized
(resp. a quasi-polarized) manifold.

For this (X, $L$ ), the sectional genus of $L$ is defined to be a non negative
integer valued function by the following formula $([Fj2])$ :

$g(L)=1+ \frac{1}{2}(K_{X}+(n-1)L)L^{n-1}$ ,

where $K_{X}$ is the canonical divisor of $X$ .
Then there is the following conjecture:

CONJECTURE 1 (p. 111 in [Fj3]). Let (X, $L$ ) be a quasi-polarized manifold.
Then $g(L)_{-}q(X)$ , where $q(X)=h^{1}(X, O_{X})$ (called the irregularity of $X$).

In [Fkl], we treat $\dim X=2$ case. But if $\dim X\geqq 3$, the problem seems
difficult. So we consider the following conjecture:

CONJECTURE 2. Let (X, $L$ ) be a quasi-polarized manifold, $Y$ a normal pro-
jective variety with lSdim $Y<\dim X$ , and $f:Xarrow Y$ a surjective morphism with
connected fibers. Then $g(L)\geqq h^{1}(O_{Y’})$ , where $Y’$ is a resolution of $Y$ .

Of course Conjecture 2 follows from Conjecture 1. The hypothesis of Con-
jecture 2 is natural because $X$ has a fibration in many cases (Albanese fibration,
Iitaka fibration, etc.).

In this paper, we consider Conjecture 2. In particular, we study $\dim Y=1$

or some special cases of $\dim Y\geqq 2$ . Using some results with respect to Conjec-
ture 2, we study Conjecture 1.
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