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1. Introduction.

All graphs considered in this paper are finite, undirected and without loops
or multiple edges. Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$ .
For a vertex $v$ of $V(G)$ , the neighbourhood of $v$ in $G$ , denoted by $N_{G}(v)$ , is the
set of vertices of $G$ adjacent to $v$ , and the degree $d_{G}(v)$ of $v$ in $G$ is $|N_{G}(v)|$ .
We denote by $\delta(G)$ and $\kappa(G)$ the minimum degree and the connectivity of $G$ ,
respectively. For a subset $S$ of $V(G)$ , let $\langle S\rangle_{G}$ denote the subgraph of $G$

induced by $S$ . For standard terms or notation not defined here, see [1] or [2].

Given a graph $G$ of order $n$ and a partition $n=\Sigma_{i=1}^{k}a_{i}$ with $a_{i}\geqq 1$ , S. B.
Maurer [10] conjectured that if $\kappa(G)\geqq k$ , then $V(G)$ can be decomposed as
$V(G)=U_{i\Leftarrow 1}^{k}A_{i}$ with the conditions $|A_{i}|=a_{i}$ and $\kappa(\langle A_{i}\rangle_{G})>0$ (i.e., $\langle A_{t}\rangle_{G}$ is
connected) for all $i,$ $1\leqq i\leqq k$ . A. Frank [7], on the other hand, conjectured the
following stronger form of this, which was settled independently by L. Lov\’asz
[9] and E. Gy\’ori [8].

THEOREM A $[9, 8]$ . Let $G$ be a graph of order $n$ , and $n= \sum_{i=1}^{k}a_{i}$ be a
partitim of $n$ zuzth $a_{i}\geqq 1$ . Suppose that $\kappa(G)\geqq k$ . Then for any distinct $k$

vertices $v_{1},$ $\cdots,$ $v_{k}$ of $V(G),$ $V(G)$ can be decomposed as $V(G)= \bigcup_{i=1}^{k}A_{i}$ with the
cmditims $|A_{i}|=a_{i},$ $v_{i}\in A_{i}$ and $\kappa(\langle A_{i}\rangle_{G})>0$ for all $i,$ $1\leqq i\leqq k$ .

Turning his attention from “ connectedness” to “ no isolation”, Frank also
conjectured the following as an analogue of Maurer’s conjecture, in which the
conditions on the connectivity are replaced by those on the minimum degree.
(Note that $\delta(\langle A_{i}\rangle_{G})>0$ implies that $\langle A_{i}\rangle_{G}$ contains no isolated vertices.) There-
after some partial results on this came out in a row, while a complete proof
was finally given by H. Enomoto [4].

THEOREM $B[4]$ . Let $G$ be a connected graph of order $n$ , and $n= \sum_{i=1}^{k}a_{i}$

be a partitim of $n$ with $a_{i}\geqq 2$ . Suppose that $\delta(G)\geqq k$ . Then $V(G)$ can be
decomposed as $V(G)= \bigcup_{i=1}^{k}A_{i}$ wfth the conditions $|A_{i}|=a_{i}$ and $\delta(\langle A_{i}\rangle_{G})>0$ for
all $i,$ $1\leqq i\leqq k$ .


