Ineffability and partition property on $\mathcal{P}_{\kappa\lambda}$

By Shizuo KAMO

(Received Aug. 29, 1994) (Revised Jan. 20, 1995)

1. Introduction.

Magidor [11] proved that if $part^*(\kappa, \lambda)$ holds, then κ is λ -ineffable. Abe [1] proved that the reverse implication also holds under the assumption of that λ is ineffable. In this paper, we shall prove the following two theorems.

THEOREM 1. If κ is completely $\lambda^{<\kappa}$ -ineffable, then part* $(\kappa, \lambda^{<\kappa})$ holds.

THEOREM 2. Assume that there exists an $\alpha < \kappa$ such that $2^{\delta} \leq \delta^{+\alpha}$ for all $\delta < \kappa$. Then, if κ is $\lambda^{<\kappa}$ -ineffable, then part* $(\kappa, \lambda^{<\kappa})$ holds.

In order to prove Theorem 1, we need to study a hierarchy of ideals which are associated with partition property and ineffability, and the correspondence between $\mathcal{P}_{\kappa}\lambda$ and $\mathcal{P}_{\kappa}\lambda^{<\kappa}$.

The hierarchy of ideals will be dealt in sections 4 and 5 and the correspondence in section 6. The theorems will be proved in section 7.

2. Notation and basic facts.

Throughout this paper, κ denotes a regular uncountable cardinal. Let \mathcal{G} be an ideal on a set S. \mathcal{G}^* denotes the dual filter of \mathcal{G} and \mathcal{G}^+ the set $\mathcal{P}(S) \setminus \mathcal{G}$. A subset W of \mathcal{G}^+ is \mathcal{G} -disjoint, if $X \cap Y \in \mathcal{G}$ for all distinct $X, Y \in W$. An \subset -maximal \mathcal{G} -disjoint subset is called an \mathcal{G} -partition. For any set $X \subset S$, $\mathcal{G}^+ | X$ denotes $\mathcal{G}^+ \cap \mathcal{P}(X)$. For any $f: S \to T$, $f_*(\mathcal{G})$ denotes the ideal $\{Y \subset T \mid f^{-1}Y \in \mathcal{G}\}$ on T.

Let A be a set such that $\kappa \subset A$. $\mathscr{P}_{\kappa}A$ denotes the set $\{x \subset A \mid |x| < \kappa\}$. Let Y be a subset of $\mathscr{P}_{\kappa}A$. $[Y]^2$ denotes the set $\{(x, y) \in Y^2 \mid x \subset y \text{ and } x \neq y\}$. For any function $F: [Y]^2 \to 2$, a subset H of Y is said to be homogeneous for F, if $|F''[H]^2| \leq 1$. For any $B \supset A$, the function $p: \mathscr{P}_{\kappa}B \to \mathscr{P}_{\kappa}A$ which is defined by $p(y)=y \cap A$ is called the projection. For each $x \in \mathscr{P}_{\kappa}A$, \hat{x} denotes the set $\{y \in \mathscr{P}_{\kappa}A \mid x \subset y \text{ and } x \neq y\}$ and Q_x the set $\{t \subset x \mid |t| < |x \cap \kappa|\}$. $I_{\kappa,A}$ denotes the ideal $\{X \subset \mathscr{P}_{\kappa}A \mid X \cap \hat{y} = \emptyset$, for some $y \in \mathscr{P}_{\kappa}A\}$. An element of $I^+_{\kappa,A}$ is called unbounded. A subset of $\mathscr{P}_{\kappa}A$ is called club, if it is unbounded and closed under unions of \subset -increasing chains with length $<\kappa$. A subset X of $\mathscr{P}_{\kappa}A$ is called