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Introduction.

We shall work in the P. L. and locally flat category. We discuss oriented
knots and links in $S^{3}$ . Two knots are equivalent if there is an ambient isotopy
of $S^{3}$ carrying one knot to the other.

H. Murakami [6] showed that any knot can be changed into a trivial knot
by repeatedly altering a diagram of the knot as in Figure $0$ .
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Figure $0$ .

This move on a diagram is called the $\#$ -move or the $\#$ -unknotting operation.
In this note, generalizing this, we define for any prime $p$ , a $\#^{p}$ -move on a
knot diagram as shown in Figure 1. Note that even if $P$ is fixed, $x$ and $y$

in Figure 1 may vary. (It is easy to define $\#^{p}$-moves for any integers $p$ .
However, if $P’$ is a factor of $p$ , then a $\#^{p}$ -move is also a $\#^{p^{r}}$ -move. We thus
consider $\#^{p}$ -moves only for prime numbers $p.$ ) The $\#$ -unknotting operation
and the pass-move [4] are examples of $\#^{2}$-moves.

We shall show that for any prime $p$ any knot can be transformed into a trivial
knot by a finite sequence of $\#^{p}$-moves (Theorem 1.1). (In fact, if $P$ is odd, a
combination of a certain $\#^{p}$ -move and Reidemeister moves achieves a crossing
change.) Then we can define the $\#^{p}$-unknotting number $u^{p}(K)$ much like the
ordinary unknotting number. Since a family of $\#^{p}$-moves is a wide variety of
diagramatic changes, one might initially think that every knot can be untied


