On relativized probabilistic polynomial time algorithms

By Hisao TANAKA*) and Masafumi KUDOH

(Received Dec. 16, 1994)

Let $\boldsymbol{S E} \boldsymbol{P}_{B}=\left\{X \subseteq \Sigma^{*}: \boldsymbol{P}[X] \neq \boldsymbol{B P P}[X]\right\}$. Bennett-Gill [BG 81] show that, in the Cantor space $2^{\Sigma^{*}}, \boldsymbol{S E} \boldsymbol{P} \boldsymbol{P}_{B}$ is of measure zero, and conjectured the possibility that it may be comeager. (In complexity theory there is such an example: Dowd [Do 92] shows that the class of m-generic oracles is of measure zero and is comeager.) We give partial answer to this possibility. Namely, we show that (i) there is a recursive oracle H such that the class $\{X: \boldsymbol{P}[X] \neq \boldsymbol{B P P}[H \oplus X]\}$ is comeager, and (ii) if we assume the existence of an oracle with an appropriate property, then the class $\boldsymbol{S E} \boldsymbol{P}_{B}$ is comeager. These two things also hold for the class $\boldsymbol{S} \boldsymbol{E} \boldsymbol{P}_{D}=\{X: \boldsymbol{P}[X] \neq \boldsymbol{N} \boldsymbol{P}[X] \cap \boldsymbol{c o N} \boldsymbol{P}[X]\}$. Proofs use forcing method due to Poizat [Po 86] with some modification. However, we do not know whether $\boldsymbol{S} \boldsymbol{E} \boldsymbol{P}_{D}$ is comeager. If $\boldsymbol{S E} \boldsymbol{E} \boldsymbol{P}_{D}$ contains all generic oracles (thence it is comeager), then we would have $\boldsymbol{P} \neq \boldsymbol{N} \boldsymbol{P}$, by a theorem of Blum-Impagliazzo [BI 87]. In the last section we state the raison d'etre for the above (i).

§ 1. Introduction.

For $X \subseteq \Sigma^{*}$, let $\boldsymbol{C}[X]$ and $\boldsymbol{D}[X]$ be relativized complexity classes, and let $\boldsymbol{E}(\boldsymbol{C}, \boldsymbol{D})=\{X: \boldsymbol{C}[X] \neq \boldsymbol{D}[X]\}$. Then, how large (or small) is $\boldsymbol{E}(\boldsymbol{C}, \boldsymbol{D})$? For example, $\boldsymbol{E}(\boldsymbol{P}, \boldsymbol{N P})$ has measure 1 [BG 81] and is comeager (e.g., [Po 86]), where $\boldsymbol{P}[X]$ and $\boldsymbol{N P}[X]$ are deterministic and nondeterministic polynomial time complexity classes relativized by oracle X, respectively. Now, consider the class

$$
\boldsymbol{S} \boldsymbol{E} \boldsymbol{P}_{\boldsymbol{B}}=\boldsymbol{E}(\boldsymbol{P}, \boldsymbol{B P P})=\{X: \boldsymbol{P}[X] \neq \boldsymbol{B P} \boldsymbol{P}[X]\},
$$

where $\boldsymbol{B P P}[X]$ is the class of sets accepted by probabilistic polynomial time bounded oracle Turing machines with oracle X whose error probability is bounded above by some positive rationals less than $1 / 2$. Bennett-Gill [BG 81] showed, among other things, that the class $\boldsymbol{S E} \boldsymbol{P}_{B}$ has measure zero and conjectured that it may be comeager.

In this paper, we show that it is the case if $\boldsymbol{B P P}[X]$ is relativized by an appropriate oracle H. Namely, let

[^0]
[^0]: * This research was partially supported by Grant-in-Aid for Scientific Research (No. 06640084), Ministry of Education, Science and Culture, Japan.

