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0. Introduction.

This paper deals with the problem of the realization of a given Lie algebra
as transverse algebra to a Lie foliation on a compact manifold.

Lie foliations have been studied by several authors (cf. [4], [5], [6], [12],

[17] $)$ . The importance of this study was increased by the fact that they arise
naturally in Molino’s classification of Riemannian foliations (cf. [14]).

TO each Lie foliation are associated two Lie algebras, the Lie algebra $\mathcal{G}$ of
the Lie group on which the foliation is modeled and the structural Lie algebra
$\mathcal{H}$ . The latter algebra is the Lie algebra of the Lie foliation $\mathscr{F}$ restricted to
the closure of any one of its leaves. In particular, it is a subalgebra of $\mathcal{G}$ . We
remark that $\mathcal{H}$ is canonically associated to $\mathscr{F}$ , but $\mathcal{G}$ is not.

Thus two interesting problems are naturally posed: the realization Problem
and the change problem.

The realization problem is to know which pair of Lie algebras $(\mathcal{G}, \mathcal{H})$ , with
$\mathcal{H}$ a subalgebra of $\mathcal{G}$ , can arise as transverse and structural Lie algebras,
respectively, of a Lie foliation $\mathscr{F}$ on a compact manifold $M$.

This problem is closely related to the following Haefliger’s problem (see

[9] $)$ : given a subgroup $\Gamma$ of a Lie group $G$ , is there a Lie $G$ -foliation on a
compact manifold $M$ with holonomy group $\Gamma$ ?

The present formulation of the realization problem in terms of Lie algebras
was first considered in [10], and [7] made a very detailed study of Lie flows
of codimension 3. But a complete classification was not obtained because of the
following open questions:

i) Let $\mathcal{G}_{7}^{k}$ be the family of Lie algebras for which there is a basis $\{e_{1}, e_{2}, e_{3}\}$

such that

$[e_{1}, e_{2}]=0$ , $[e_{1}, e_{3}]=e_{1}$ , $[e_{2}, e_{3}]=ke_{2}$ , $k\in[-1,0)\cup(0,1]$ .

For which $k$ is there a Lie $\mathcal{G}_{7}^{k}$-flow on a compact manifold with basic
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