Uniqueness of the solution of non-linear singular partial differential equations

By Hidetoshi Tahara

(Received May 17, 1994)
(Revised Nov. 14, 1994)

Introduction.

The existence and the uniqueness of the solution of non-linear singular partial differential equations of the form
(E)

$$
\left(t \frac{\partial}{\partial t}\right)^{m} u=F\left(t, x,\left\{\left(t \frac{\partial}{\partial t}\right)^{j}\left(\frac{\partial}{\partial x}\right)^{\alpha} u\right\}_{\substack{j+|\alpha| \leq m \\ j<m}}\right)
$$

were discussed in Gérard-Tahara [1], [2]; though, the uniqueness in [2] can be applied only to the solution with

$$
\begin{align*}
&\left(t \frac{\partial}{\partial t}\right)^{j} u(t, x)=O\left(t^{s}\right) \quad(\text { as } t \rightarrow 0 \text { uniformly in } x) \tag{0.1}\\
& \text { for } j=0,1, \cdots, m-1
\end{align*}
$$

for some $s>0$.
In this paper, the author will prove the uniqueness of the solution of (E) under the following weaker assumption :

$$
\begin{align*}
&\left(t \frac{\partial}{\partial t}\right)^{j} u(t, x)=O\left(\frac{1}{(-\log t)^{s}}\right) \quad(\text { as } t \rightarrow 0 \text { uniformly in } x) \tag{0.2}\\
& \text { for } j=0,1, \cdots, m-1
\end{align*}
$$

for some $s>0$.
The motivation for such an improvement will be illustrated in the following example.

Example. Let us consider

$$
\begin{equation*}
t \frac{\partial u}{\partial t}=\lambda u+u \frac{\partial u}{\partial x} \tag{0.3}
\end{equation*}
$$

where $(t, x) \in \boldsymbol{C} \times \boldsymbol{C}$ and $\lambda \in \boldsymbol{C}$. Then :
(1) $u \equiv 0$ is a solution of (0.3).
(2) By the method of the separation of variables we can see that (0.3) has solutions of the form

