Factors generated by direct sums of I_{1} factors

By Atsushi Sakuramoto

(Received Jun. 6, 1994)
(Revised Nov. 4, 1994)

Introduction.

In 1983 Jones introduced in [3] the concept of an index for a pair of type II_{1} factors, called Jones index nowadays, and he showed the importance of such indices. With this as a momentum, the interests of research in the theory of operator algebras have been gradually extended from a single factor to a pair of factors. Thereafter Pimsner-Popa [8] gave an important relation between the index and the relative entropy for a pair of finite von Neumann algebras and showed that if $N \subset M$ is a pair of II_{1} factors with finite index, then there exists a certain orthonormal basis of M over N. In the case of type III factors, Kosaki [4] defined an index depending on a conditional expectation and, on the other hand, Longo [5] gave another definition by using the canonical endomorphism. And in the case of C^{*}-algebras, Watatani [12] defined an index by using a quasi-basis.

However it is not easy to calculate explicitly the index even for a pair of II_{1} factors only from the definition. For this reason, useful index formulas are expected. So far, Pimsner-Popa [8], Wenzl [13] and Ocneanu [7] gave index formulas respectively. Wenzl's formula is applicable only for pairs of approximately finite dimensional (=AFD) II_{1} factors. In this paper we give a new index formula, that is the extension of Wenzl's one, and its application, for a pair of II_{1} factors which are not necessarily AFD.

We treat a pair of II_{1} factors arising from two increasing sequences of finite direct sums of II_{1} factors. Let us explain more exactly, denote the sequences by $\left\{M_{n}\right\}_{n \in N}$ and $\left\{N_{n}\right\}_{n \in N}$, and assume that the diagram
(A)

$$
\begin{aligned}
& M_{n} \subset M_{n+1} \\
& \bigcup \\
& N_{n} \subset N_{n+1}
\end{aligned}
$$

is a commuting square for any n. Set $M=\left(\cup_{n} M_{n}\right)^{\prime \prime}$ and $N=\left(\cup_{n} N_{n}\right)^{\prime \prime}$. If the inclusion relations $N_{n} \subset N_{n+1}, M_{n} \subset M_{n+1}$ and $N_{n} \subset M_{n}$ are periodic, then M and N are found to be II_{1} factors. For such a pair $N \subset M$ we give an index formula.

