Factors generated by direct sums of II₁ factors

By Atsushi SAKURAMOTO

(Received Jun. 6, 1994) (Revised Nov. 4, 1994)

Introduction.

In 1983 Jones introduced in [3] the concept of an index for a pair of type II_1 factors, called Jones index nowadays, and he showed the importance of such indices. With this as a momentum, the interests of research in the theory of operator algebras have been gradually extended from a single factor to a pair of factors. Thereafter Pimsner-Popa [8] gave an important relation between the index and the relative entropy for a pair of finite von Neumann algebras and showed that if $N \subset M$ is a pair of II_1 factors with finite index, then there exists a certain orthonormal basis of M over N. In the case of type III factors, Kosaki [4] defined an index depending on a conditional expectation and, on the other hand, Longo [5] gave another definition by using the canonical endomorphism. And in the case of C^* -algebras, Watatani [12] defined an index by using a quasi-basis.

However it is not easy to calculate explicitly the index even for a pair of II_1 factors only from the definition. For this reason, useful index formulas are expected. So far, Pimsner-Popa [8], Wenzl [13] and Ocneanu [7] gave index formulas respectively. Wenzl's formula is applicable only for pairs of approximately finite dimensional (=AFD) II_1 factors. In this paper we give a new index formula, that is the extension of Wenzl's one, and its application, for a pair of II_1 factors which are not necessarily AFD.

We treat a pair of II₁ factors arising from two increasing sequences of finite direct sums of II₁ factors. Let us explain more exactly, denote the sequences by $\{M_n\}_{n \in \mathbb{N}}$ and $\{N_n\}_{n \in \mathbb{N}}$, and assume that the diagram

(A)
$$\begin{array}{c} M_n \subset M_{n+1} \\ \cup & \cup \\ N_n \subset N_{n+1} \end{array}$$

is a commuting square for any *n*. Set $M = (\bigcup_n M_n)^n$ and $N = (\bigcup_n N_n)^n$. If the inclusion relations $N_n \subset N_{n+1}$, $M_n \subset M_{n+1}$ and $N_n \subset M_n$ are periodic, then *M* and *N* are found to be II₁ factors. For such a pair $N \subset M$ we give an index formula.