J. Math. Soc. Japan Vol. 48, No. 4, 1996

On a normal integral bases problem over cyclotomic Z_p -extensions

By Humio ICHIMURA

(Received Oct. 28, 1994)

§1. Introduction.

Let p be a prime number and K be a number field containing a primitive p-th root of unity. Let $\mathcal{H}(K)$ be the subgroup of $K^{\times}/K^{\times p}$ consisting of elements $[\alpha] (\equiv K^{\times}/K^{\times p})$ for which the extension $K(\alpha^{1/p})$ is unramified over K, and $\mathcal{H}(K)$ be the subset of $\mathcal{H}(K)$ consisting of elements $[\alpha] (\equiv \mathcal{H}(K))$ for which the unramified cyclic extension $K(\alpha^{1/p})/K$ has a relative normal integral bases. Here, we say that a Galois extension L/E of a number field E has a relative normal integral bases (an RNIB, for short) when the integer ring O_L of L is free over the group ring $O_E[\text{Gal}(L/E)]$. In [3], Childs gave a criterion for a cyclic extension L/K of degree p to be unramified and have an RNIB (see Lemma 5 in § 4), from which it follows that $\mathcal{H}(K)$ is a subgroup of $\mathcal{H}(K)$. He raised the question "what is the quotient group $\mathcal{H}(K)/\mathcal{H}(K)$?". We have been investigating this problem for certain abelian fields ([14], [15]) in connection with power series associated to certain p-adic L-functions. A similar study is also given in Taylor [24] when K is the p-th cyclotomic field $Q(\mu_p)$. In this paper, we shall continue these investigations.

Let p be an odd prime number and k be an imaginary abelian field satisfying the following conditions:

- (C1) k contains a primitive p-th root of unity.
- (C2) $p \nmid [k: \mathbf{Q}].$
- (C3) There is only one prime ideal of k over p.

Let k_{∞}/k be the cyclotomic \mathbb{Z}_p -extension and k_n $(n \ge 0)$ be its *n*-th layer. We write, for brevity, $\mathcal{H}_n = \mathcal{H}(k_n)$ and $\mathcal{H}_n = \mathcal{H}(k_n)$. The Galois groups $\Delta = \operatorname{Gal}(k/Q)$ and $\Gamma = \operatorname{Gal}(k_{\infty}/k)$ act on these groups in a natural way. In particular, we may decompose these groups by the action of complex conjugation ρ $(\subseteq \Delta)$; $\mathcal{H}_n = \mathcal{H}_n^+ \oplus \mathcal{H}_n^-$, $\mathcal{H}_n = \mathcal{H}_n^+ \oplus \mathcal{H}_n^-$. As far as normal integral bases problem is concerned, we have nothing to consider on the "odd" part, because we already know that $\mathcal{H}_n^- = \{1\}$ (Brinkhuis [1]). As for the "even" part, we have described,

This research was partially supported by Grant-in-Aid for Scientific Research (C) (No. 08640226), Ministry of Education, Science and Culture.