On a normal integral bases problem over cyclotomic \boldsymbol{Z}_{p}-extensions

By Humio Ichimura

(Received Oct. 28, 1994)

§ 1. Introduction.

Let $力$ be a prime number and K be a number field containing a primitive p-th root of unity. Let $\mathscr{H}(K)$ be the subgroup of $K^{\times} / K^{\times p}$ consisting of elements $[\alpha]\left(\in K^{\times} / K^{\times p}\right)$ for which the extension $K\left(\alpha^{1 / p}\right)$ is unramified over K, and $\mathscr{I}(K)$ be the subset of $\mathscr{H}(K)$ consisting of elements $[\alpha](\in \mathscr{H}(K))$ for which the unramified cyclic extension $K\left(\alpha^{1 / p}\right) / K$ has a relative normal integral bases. Here, we say that a Galois extension L / E of a number field E has a relative normal integral bases (an RNIB, for short) when the integer ring O_{L} of L is free over the group ring $O_{E}[\operatorname{Gal}(L / E)]$. In [3], Childs gave a criterion for a cyclic extension L / K of degree p to be unramified and have an RNIB (see Lemma 5 in §4), from which it follows that $\mathscr{N}(K)$ is a subgroup of $\mathscr{H}(K)$. He raised the question "what is the quotient group $\mathscr{H}(K) / \mathscr{N}(K)$?". We have been investigating this problem for certain abelian fields ([14], [15]) in connection with power series associated to certain p-adic L-functions. A similar study is also given in Taylor [24] when K is the p-th cyclotomic field $\boldsymbol{Q}\left(\mu_{p}\right)$. In this paper, we shall continue these investigations.

Let p be an odd prime number and k be an imaginary abelian field satisfying the following conditions:
(C1) k contains a primitive p-th root of unity.
(C2) $p \not x[k: \boldsymbol{Q}]$.
(C3) There is only one prime ideal of k over p.
Let k_{∞} / k be the cyclotomic \boldsymbol{Z}_{p}-extension and $k_{n}(n \geqq 0)$ be its n-th layer. We write, for brevity, $\mathscr{H}_{n}=\mathscr{H}\left(k_{n}\right)$ and $\mathscr{N}_{n}=\mathscr{N}\left(k_{n}\right)$. The Galois groups $\Delta=\operatorname{Gal}(k / \boldsymbol{Q})$ and $\Gamma=\operatorname{Gal}\left(k_{\infty} / k\right)$ act on these groups in a natural way. In particular, we may decompose these groups by the action of complex conjugation $\rho(\in \Delta)$; $\mathscr{H}_{n}=\mathscr{H}_{n}^{+} \oplus \mathscr{H}_{n}^{-}, \mathscr{N}_{n}=\mathscr{N}_{n}^{+} \oplus \mathscr{N}_{n}^{-}$. As far as normal integral bases problem is concerned, we have nothing to consider on the "odd" part, because we already know that $\Re_{n}^{-}=\{1\}$ (Brinkhuis [1]). As for the "even" part, we have described,

