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Identifying tunnel number one knots
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Let $K$ be a knot in $S^{3}$ . The tunnel number $t(K)$ of $K$ is the minimal number
of mutually disjoint arcs $\{\tau_{i}\}$ “properly embedded” in the pair $(S^{3}, K)$ such that
the complement of an open regular neighbourhood of $K\cup(\cup\tau_{\mathfrak{i}})$ is a handlebody.
In the above, if the arc system consists of only one arc, it is called an unknotting
tunnel for K. $K$ is said to have a $(g, b)$-decomPosition if there is a genus $g$

Heegaard splitting $\{W_{1}, W_{2}\}$ of $S^{3}$ such that $K$ intersects $W_{i}(i=1,2)$ in a b-string
trivial arc system (cf. $[D$, MS]). If a knot $K$ has a $(g, b)$-decomposition, then
t(K)$g+b--1. In particular; if $K$ admits a $(1, 1)$ -decomposition then it has tunnel
number one; however, it is shown by [MR, MSY, Yol] that the converse does
not hold.

Kohno [Kh] gave an estimate of tunnel numbers of knots in terms of the
quantum invariants (cf. [Wk, $G]$ ), and the third author [Yol] gave a condition
for a knot to admit a $(g, b)$-decomposition in terms of the quantum $SU(2)$

invariants. Kouzi Kodama [Kd] applied Kohno’s estimate to prime knots up to
10 crossings by using his computer program “Knot”, and determined the tunnel
numbers of several such knots.

In this paper, we give another method to determine whether a given knot
$K$ has tunnel number one and whether it admits a $(1, 1)$-decomposition, by using
the idea due to Birman-Hilden [BH] and Viro [V] (cf. [BGM], [BM], $[BoZe]$ ).
The method enables us to determine the tunnel numbers of prime knots uP to
10 crossings (Theorem 2.5), and is potentially useful to the problem of detecting
tunnel number one knots which do not admit $(1, 1)$-decompositions. The idea is
to look at the canonical 2-fold symmetry arising from an unknotting tunnel and
to reduce the problem to that concerning symmetries of knots and that concern-
ing spatial $\theta$ -curves (Theorem 1.2). Study of symmetries of knots has long
history, and we now have enough information concerning symmetries of various
kinds of knots, including the Montesinos knots and the prime knots up to 10
crossings (see [AHW, $BoZm$ , HW, KS]). On the other hand, there is a naive
but convenient method for the study of the problem concerning spatial $\theta$ -curves
(Corollary 1.3). By using this method, we obtain a certain condition for a


