Topological Anosov maps of infra-nil-manifolds

By Naoya SUMI

(Received Apr. 12, 1994)

§0. Introduction.

We shall discuss a part of a problem of whether the universal model of Anosov diffeomorphisms exists. Concerning with this problem Manning [Ma2] proved that every Anosov diffeomorphism of an infra-nil-manifold is topologically conjugate to a hyperbolic infra-nil-automorphism. From the remarkable proof of his result and the work of Franks [Fr], Aoki and Hiraide has been studied the dynamics of covering maps of a torus ([Ao-Hi]).

We shall show in this paper that some of the results stated in [Ao-Hi] become realistic for infra-nil-manifolds as follows.

THEOREM 1. Let $f: N/\Gamma \rightarrow N/\Gamma$ be a covering map of an infra-nil-manifold and denote as $A: N/\Gamma \rightarrow N/\Gamma$ the infra-nil-endomorphism homotopic to f.

If f is a TA-map, then A is hyperbolic and the inverse limit system of $(N/\Gamma, f)$ is topologically conjugate to the inverse limit system of $(N/\Gamma, A)$.

THEOREM 2. Let f and A be as in Theorem 1. Then the following statements hold:

(1) if f is a TA-homeomorphism, then A is a hyperbolic infra-nil-automorphism and f is topologically conjugate to A,

(2) if f is a topological expanding map, then A is an expanding infra-nilendomorphism and f is topologically conjugate to A.

In the statement of Theorem 2 it notices that (1) is a generalization of Manning [Ma2].

First we shall explain here the definitions and notations used above. Let X and Y be compact metric spaces and let $f: X \to X$ and $g: Y \to Y$ be continuous surjections. Then f is said to be *topologically conjugate* to g if there exists a homeomorphism $\varphi: Y \to X$ such that $f \circ \varphi = \varphi \circ g$.

Let X be a compact metric space with metric d. For $f: X \rightarrow X$ a continuous surjection, we let

 $X_{f} = \{(x_{i}) : x_{i} \in X \text{ and } f(x_{i}) = x_{i+1}, i \in \mathbb{Z}\},\$ $\sigma_{f}((x_{i})) = (f(x_{i})).$