On Thom polynomials of the singularities D_k and E_k

By Yoshifumi ANDO

(Received Apr. 1, 1993) (Revised Jan. 16, 1996)

Introduction.

Let A_k , D_k and E_k denote the types of the singularities of function germs studied in [4]. Let N and P denote smooth manifolds. When a C^{∞} stable map germ $f:(N, x) \rightarrow (P, y)$ is C^{∞} equivalent to a versal unfolding of a function germ with singularity A_k , D_k or E_k , we say that f has a singularity of type A_k , D_k or E_k at x respectively (see, for example, their normal forms of [2, Section 1]). When every singularity of a smooth map f is of type A_k or D_k (resp. A_k , D_k or E_k) with any number k, we say that f is AD-regular (resp. ADE-regular) in this paper.

Let X_k be one of A_k , D_k or E_k . We define $S_{\bar{X}_k}(f)$ to be the topological closure of the subset $S_{X_k}(f)$ consisting of all singular points of type X_k of f. We can consider the fundamental class of $S_{\bar{X}_k}(f)$ in $H_*(N; \mathbb{Z}/2\mathbb{Z})$ and define the Thom polynomial of X_k for f as its Poincaré dual class denoted by $P(X_k, f)$. As usual we expect that it is represented by Stiefel-Whitney classes $w_j(TN-f^*(TP))$ (cf. [6]).

The purpose of this paper is to give formula calculating $P(D_k, f)$ for AD-regular maps and $P(E_k, f)$ for ADE-regular maps in a finite process ([Theorems 4.1 and 4.2]). This kind of formulas first appeared in [9] and [10] to calculate Thom polynomials of the singularities of type Σ^i and $\Sigma^{i,j}$. Their results are reviewed in Section 1. In our case of $X_k = D_k$ or E_k , we have the submanifolds $\sum X_k$ constructed in the infinite jet space $J^{\infty}(N, P)$ in [2] such that if the jet extension $j^{\infty}f$ of f is transverse to $\sum X_k$, then we have $S_{X_k}(f) = (j^{\infty}f)^{-1}(\sum X_k)$. Using the properties of $\sum X_k$ in $J^{\infty}(N, P)$ reviewed in Section 2, we lift $S_{\bar{X}_k}(f)$ up to a submanifold S of the total space of a certain flag bundle over N in Sections 5 and 6 so that the Poincaré dual class of S is the Euler class of some vector bundle over this total space related to the normal bundle of $\sum X_k$. This means that $P(X_k, f)$ is the image of this Euler class by the Gysin homomorphism of this flag bundle. For singularities A_k , see the similar result of [1].

In Section 7 we see that Theorems 4.1 and 4.2 are generalized to the situations of smooth maps into foliated manifolds or of smooth sections of fibre