A note on the structure of the ring of symmetric Hermitian modular forms of degree 2 over the Gaussian field

Dedicated to Professor Hideo Shimizu on his sixtieth birthday

By Shoyu NagaOKa

(Received Feb. 10, 1994)
(Revised Oct. 13, 1994)

Introduction.

In Introduction of [14], H. L. Resnikoff and Y.-S. Tai summarized known results about the structure of the graded ring of modular forms. They stated there as follows: Freitag [4] studied the Hermitian modular group of genus 2 (i.e., acting on the complex 4 -dimensional Hermitian tube domain) associated with the ring $\boldsymbol{Z}[i]$ of Gaussian integers and constructed the 6 generators of the graded ring of symmetric Hermitian modular forms of even weight in terms of theta nullwerte, but the relation they satisfy is not yet known ([14], p. 98). The main purpose of this note is to give the explicit relation. Let \boldsymbol{H}_{2} be the Hermitian upper half space of degree 2. The theta constant on \boldsymbol{H}_{2} with characteristic \boldsymbol{m} is defined by
$\Theta_{\boldsymbol{m}}(Z)=\Theta(Z ; \boldsymbol{a}, \boldsymbol{b})=\sum_{\boldsymbol{g} \in M_{2 \times 1}(Z[i])} \boldsymbol{e}\left[\frac{1}{2}\left(Z\left\{\boldsymbol{g}+\frac{1+i}{2} \boldsymbol{a}\right\}+2 \operatorname{Re}^{\frac{1+i}{2}}{ }^{t} \boldsymbol{b} \boldsymbol{g}\right)\right], \quad Z \in \boldsymbol{H}_{2}$,
where $\boldsymbol{m}=\binom{\boldsymbol{a}}{\boldsymbol{b}}, \boldsymbol{a}, \boldsymbol{b} \in M_{2 \times 1}(\boldsymbol{Z}), A\{B\}={ }^{t} \bar{B} A B$ and $\boldsymbol{e}[s]=e^{2 \pi i s}$ for $s \in \boldsymbol{C}$. Denote by \mathcal{E} the set of even characteristics of degree $2 \bmod 2(c f . \S 1.2)$. Define

$$
\begin{aligned}
\psi_{4 k}(Z) & :=\frac{1}{4} \sum_{m \in \mathcal{E}} \theta_{m}^{4 k}(Z), \\
\chi_{8}(Z) & :=\frac{1}{3072}\left(\psi_{4}^{2}(Z)-\psi_{8}(Z)\right), \\
\chi_{10}(Z) & :=2^{-12} \prod_{m \in \mathcal{E}} \theta_{m}(Z), \\
\chi_{12}(Z) & \left.:=2_{\text {fifteen }}^{-15} \sum_{m_{1}}(Z) \cdot \theta_{m_{2}}(Z) \cdots \theta_{m_{6}}(Z)\right)^{2},
\end{aligned}
$$

[^0]
[^0]: This research was partially supported by Grant-in-Aid for Scientific Research (No. 06640093), Ministry of Education, Science and Culture.

