On a unitary version of Suzuki's exponential product formula

By Kazuhiko AOMOTO

(Received Jan. 19, 1994) (Revised Oct. 3, 1994)

1. Let A_1, \dots, A_q be bounded skew-adjoint linear operators on a separable Hilbert space \mathcal{H} over C. We put the sum $A = A_1 + \dots + A_q$. For an arbitrary $x \in \mathbb{R}$, their exponentials $e^{xA_1}, \dots, e^{xA_q}$ and e^{xA} are unitary. For a sequence of numbers k_1, \dots, k_r for $1 \le k_p \le q$, we consider the product

$$(1.1) Q = e^{xB_1} \cdot e^{xB_2} \cdots e^{xB_r}$$

where B_{ν} denotes $p_{\nu}A_{k_{\nu}}$ for some $p_{\nu} \in \mathbf{R}$. The operators Q and e^{xA} have Taylor expansions as bounded operators

(1.2)
$$Q = \sum_{\nu_1, \dots, \nu_{r \ge 0}} \frac{B_1^{\nu_1} \cdots B_r^{\nu_r}}{\nu_1! \cdots \nu_r!} x^{\nu_1 + \dots + \nu_r}$$

(1.3)
$$e^{xA} = \sum_{\nu \geq 0} \frac{A^{\nu}}{\nu!} x^{\nu}.$$

Suppose that we can choose p_1, \dots, p_r with $\sum_{\nu=1}^r p_{\nu}=1$ such that

(1.4)
$$||Q(x)-e^{xA}|| = O|x|^{s+1}$$
 for $|x| < \rho$ (ρ a positive number)

for some $s \in \mathbb{Z}_{>0}$ ($\| \|$ denotes the norm of vectors in \mathcal{L} or bounded operators on \mathcal{L}).

(1.4) is equivalent to the equality

(1.5)
$$\sum_{\substack{0 \le \nu_1, \dots, \nu_r \\ \nu_1 + \dots + \nu_r \le s}} x^{\nu_1 + \dots + \nu_r} \frac{B_1^{\nu_1} \dots B_r^{\nu_r}}{\nu_1! \dots \nu_r!} = \sum_{\nu=0}^s \frac{x^{\nu}}{\nu!} A^{\nu}.$$

We say then Q(x) is an s-th order approximation of e^{xA} .

We fix the above p_1, \dots, p_r and k_1, \dots, k_r . Suppose now that for each $m \in \mathbb{Z}_{>0}$, there exist N real numbers $p_{m,1}, \dots, p_{m,N}$ with $\sum_{j=1}^{N} p_{m,j} = 1$ (N = N(m) depends on m) such that the ordered product

$$(1.6) Q^{(m)}(x) = Q(p_{m,1}x) \cdot Q(p_{m,2}x) \cdots Q(p_{m,N}x)$$

is an m-th order approximation of e^{xA} , i.e.,