Sector theory and automorphisms for factor-subfactor pairs

Dedicated to Professor Masamichi Takesaki on his sixtieth birthday

By Hideki Kosaki

(Received May 20, 1994)
(Revised Aug. 29, 1994)

1. Introduction.

The index theory ([19]) for $I I_{1}$-factors was initiated by Jones about ten years ago. Since then tremendous progress has been made in the subject matter. Especially, classification of subfactors with small indices in the AFD $\left(I I_{1}\right)$ factors is of particular interest (see $[41,42,45,46]$ and also [18, 21]), and this makes it possible to study automorphisms for factor-subfactor pairs in details (see for example [22, 33, 47]).

On the other hand, the notion of an index has been generalized to wider classes of operator algebras (for example [25, 37, 52]). In Longo's approach on index theory $([37,38])$ for factors of type $I I I$, the notion of a sector plays a fundamental role. This notion originally occurred in Quantum Field Theory, and it has been proved extremely useful by recent works of Izumi and Longo ($[14,15,16,39,40]$).

In our previous papers $[1,28]$, we saw that sectors are also useful to analyze automorphisms for factor-subfactor pairs. Let $M \supseteqq N$ be a factorsubfactor pair (with finite index), and $\theta \in \operatorname{Aut}(M, N)$ be an automorphism for the pair. Let $\left\{M_{k}\right\}_{k=0,1,2, \ldots}$ be the Jones tower, and we assume that θ is already extended to the tower in the canonical way. Then, θ is called strongly outer ([1]) if, for $x \in M_{k}$, the commutation relation $y x=x \theta(y)$ for all $y \in N$ forces $x=0$, and in ([28]) we saw that the strong outerness is characterized by making use of relevant sectors. Namely, θ is strongly outer if and only if it does not appear (as an irreducible component) in $\bigsqcup_{k}(\rho \bar{\rho})^{k}$, where ρ is a sector (or an endomorphism) satisfying $N=\rho(M)$ (see $\S 3$ for details). In terms of bimodules naturally attached to the inclusion $M \supseteq N$ in the Ocneanu approach ($[41,42]$), this condition means that the $M-M$ bimodule canonically determined

[^0]
[^0]: This research was partially supported by Grant-in-Aid for Scientific Research (No. 06221257), Ministry of Education, Science and Culture.

