Jacobi sums and the Hilbert symbol for a power of two ${ }^{(*)}$

By Hiroo MIKI

(Received Sept. 9, 1992)
(Revised Aug. 22, 1994)

Many number theorists have taken up the problem of determining the exact conductor $C_{m}^{(a)}$ of the Jacobi sum Hecke character $\mathfrak{a} \mapsto J_{m}^{(a)}(\mathfrak{a})$ since Weil [18] raised its interesting problem in 1952. Recently, Coleman-McCallum [2] determined the exact conductor $C_{m}^{(a)}$ when m is a power of any odd prime number l, using the arithmetic geometry of Fermat curves, and Miki [12], [13], [14] gave a purely number theoretic proof to their results. But the case $l=2$ is still an unsolved more difficult open problem, and it seems that Coleman-McCallum's method [2] is not applicable to the case $l=2$, though Coleman [3], § 6 (with G. Anderson) gave a partial result by using Ihara-Anderson's theory.

The purpose of the present paper is to give the complete determination of the conductor $f_{n}(g, h, s)$ of the character $\alpha \mapsto\left(\alpha, 2^{g}(1+4)^{n}(-1)^{s}\right)_{n}$ with $g \in \boldsymbol{Z}$, $h \in \boldsymbol{Z}_{2}$, and $s \in \boldsymbol{Z} / 2 \boldsymbol{Z}$ for $n \geqq 2$ (see Theorem 5 in § 1), and the conductor $C_{2^{n}}^{(a)}$ of the Jacobi sum Hecke character $\mathfrak{a} \mapsto J_{2 n}^{(a)}(\mathfrak{a})$ for the power 2^{n} (see Corollary to Theorem 9 in $\S 2$), by the methods of [13], [14]. Here, \boldsymbol{Z} and \boldsymbol{Z}_{2} are the rings of rational and 2 -adic integers respectively, and (, $)_{n}$ denotes the Hilbert norm residue symbol in $\boldsymbol{Q}_{2}\left(\zeta_{2 n}\right)$ for the power 2^{n}, where \boldsymbol{Q}_{2} is the field of 2-adic numbers and $\zeta_{2 i}$ is a fixed primitive 2^{i}-th root of unity satisfying $\zeta_{2 i+1}^{2}=\zeta_{2 i}$ for all $i \geqq 1$ (for the exact definition, see [14], § 1).

Since $\delta^{(n)}(\alpha)$ is well-defined $\bmod 2^{n-1}\left(\right.$ not $\left.\bmod 2^{n}\right)$ when $l=2$ (see Lemma 6 in $\S 2$), we can determine $i_{2 n}^{(a)}(\alpha) \bmod 2^{n-1}$ in the same way as [13] (see Theorem 8 in § 2). In Theorem 9 (see also its Remark) in § 2, we will determine $i_{2 n}^{(a)}(\boldsymbol{\alpha}) \bmod 2^{n}$ for $\alpha \in \boldsymbol{Q}\left(\zeta_{2 n}\right), \alpha \equiv 1\left(\bmod \pi_{n}^{3}\right)$, by using Theorem 8 and certain congruences for Jacobi sums (see Theorems 12, 13, and 14 in $\S 3$). Note that Theorem 9 (and its Remark) contains Coleman [3], Theorem (6.4) as a special case. Theorem 9, combined with Theorem 5, gives the complete determination of the conductor $C_{2^{n}}^{(a)}$ (see Corollary to Theorem 9).

[^0]
[^0]: ${ }^{(*)}$ This paper contains the details of part of my talk at the Number Theory Seminar (Goldfeld), Columbia Univ., March 21, 1988 (see [12]).

