Jacobi sums and the Hilbert symbol for a power of two^(*)

By Hiroo MIKI

(Received Sept. 9, 1992) (Revised Aug. 22, 1994)

Many number theorists have taken up the problem of determining the exact conductor $C_m^{(a)}$ of the Jacobi sum Hecke character $\mathfrak{a} \mapsto J_m^{(a)}(\mathfrak{a})$ since Weil [18] raised its interesting problem in 1952. Recently, Coleman-McCallum [2] determined the exact conductor $C_m^{(a)}$ when m is a power of any *odd* prime number l, using the arithmetic geometry of Fermat curves, and Miki [12], [13], [14] gave a purely number theoretic proof to their results. But the case l=2 is still an unsolved more difficult open problem, and it seems that Coleman-McCallum's method [2] is not applicable to the case l=2, though Coleman [3], §6 (with G. Anderson) gave a partial result by using Ihara-Anderson's theory.

The purpose of the present paper is to give the complete determination of the conductor $f_n(g, h, s)$ of the character $\alpha \mapsto (\alpha, 2^g(1+4)^h(-1)^s)_n$ with $g \in \mathbb{Z}$, $h \in \mathbb{Z}_2$, and $s \in \mathbb{Z}/2\mathbb{Z}$ for $n \ge 2$ (see Theorem 5 in § 1), and the conductor $C_{2n}^{(a)}$ of the Jacobi sum Hecke character $\alpha \mapsto J_{2n}^{(\alpha)}(\alpha)$ for the power 2^n (see Corollary to Theorem 9 in § 2), by the methods of [13], [14]. Here, \mathbb{Z} and \mathbb{Z}_2 are the rings of rational and 2-adic integers respectively, and $(,)_n$ denotes the Hilbert norm residue symbol in $\mathbb{Q}_2(\zeta_{2n})$ for the power 2^n , where \mathbb{Q}_2 is the field of 2-adic numbers and ζ_{2i} is a fixed primitive 2^i -th root of unity satisfying $\zeta_{2i+1}^2 = \zeta_{2i}$ for all $i \ge 1$ (for the exact definition, see [14], § 1).

Since $\delta^{(n)}(\alpha)$ is well-defined mod 2^{n-1} (not mod 2^n) when l=2 (see Lemma 6 in §2), we can determine $i_{2n}^{(\alpha)}(\alpha) \mod 2^{n-1}$ in the same way as [13] (see Theorem 8 in §2). In Theorem 9 (see also its Remark) in §2, we will determine $i_{2n}^{(\alpha)}(\alpha) \mod 2^n$ for $\alpha \in Q(\zeta_{2n}), \alpha \equiv 1 \pmod{\pi_n^3}$, by using Theorem 8 and certain congruences for Jacobi sums (see Theorems 12, 13, and 14 in §3). Note that Theorem 9 (and its Remark) contains Coleman [3], Theorem (6.4) as a special case. Theorem 9, combined with Theorem 5, gives the complete determination of the conductor $C_{2n}^{(\alpha)}$ (see Corollary to Theorem 9).

^(*) This paper contains the details of part of my talk at the Number Theory Seminar (Goldfeld), Columbia Univ., March 21, 1988 (see [12]).