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Many number theorists have taken uP the Problem of determinlng the exact
conductor $C_{m}^{(a)}$ of the Jacobi sum Hecke character $\mathfrak{a}rightarrow J_{m}^{(a)}(\mathfrak{a})$ since Weil [18]

raised its interesting problem in 1952. Recently, Coleman-McCallum [2] deter-
mined the exact conductor $C_{m}^{(a)}$ when $m$ is a power of any odd prime number
1, using the arithmetic geometry of Fermat curves, and Miki [12], [13], [14]

gave a purely number theoretic proof to their results. But the case $1=2$ is still
an unsolved more difficult open problem, and it seems that Coleman-McCallum’s
method [2] is not applicable to the case $l=2$ , though Coleman [3], \S 6 (with

G. Anderson) gave a partial result by using Ihara-Anderson’s theory.
The purpose of the present paper is to give the complete determination of

the conductor $f.(g, h, s)$ of the character $\alpha-(\alpha, 2^{g}(1+4)^{h}(-1)^{s})_{n}$ with $g\in Z$,
$h\in Z_{2}$ , and $s\in Z/2Z$ for $n\geqq 2$ (see Theorem 5 in \S 1), and the conductor $C_{2^{n}}^{(a)}$

of the Jacobi sum Hecke character $\mathfrak{a}rightarrow J_{z^{n}}^{(a)}(\mathfrak{a})$ for the power $2^{n}$ (see Corollary to
Theorem 9 in \S 2), by the methods of [13], [14]. Here, $Z$ and $Z_{2}$ are the rings
of rational and 2-adic integers respectively, and $(, )_{n}$ denotes the Hilbert norm
residue symbol in $Q_{2}(\zeta_{2n})$ for the Power $2^{n}$ , where $Q_{2}$ is the field of 2-adic
numbers and $\zeta_{2^{i}}$ is a fixed primitive $2^{i}$-th root of unity satisfying $\zeta_{2^{i+1}}^{2}=\zeta_{zi}$ for
all $i\geqq 1$ (for the exact definition, see [14], \S 1).

Since $\delta^{(n)}(\alpha)$ is well-defined $mod 2^{n-1}$ (not $mod 2^{n}$ ) when $1=2$ (see Lemma 6
in \S 2), we can determine $i_{2^{n}}^{(a)}(\alpha)mod 2^{n-1}$ in the same way as [13] (see Theo-
rem 8 in \S 2). In Theorem 9 (see also its Remark) in \S 2, we will determine
$i_{z^{n}}^{(a)}(\alpha)mod 2^{n}$ for $\alpha\in Q(\zeta_{2n}),$ $\alpha\equiv 1(mod \pi_{n}^{3})$ , by using Theorem 8 and certain
congruences for Jacobi sums (see Theorems 12, 13, and 14 in \S 3). Note that
Theorem 9 (and its Remark) contains Coleman [3], Theorem (6.4) as a special
case. Theorem 9, combined with Theorem 5, gives the complete determination
of the conductor $C_{2^{n}}^{(a)}$ (see Corollary to Theorem 9).

(*) This paper contains the details of part of my talk at the Number Theory Seminar
(Goldfeld), Columbia Univ., March 21, 1988 (see [12]).


