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Circles on quaternionic space forms
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Introduction.

A smooth curve $\gamma$ parametrized by its arc-length is called a circle of geo-
desic curvature $\kappa(\kappa>0)$ if it satisfies the following equations with an associated
unit vector field $Y$ along $\gamma$ ;

$\nabla_{X}X=\kappa Y$ , $\nabla_{X}Y--\kappa X$ ,

where $X(i)=\dot{\gamma}(t)$ . Though this definition was given by Nomizu and Yano [8]

in 1974, the study on circles is just begun. We studied in [3] and [4] circles
on complex space forms, and in [2] we studied them on a surface of nonpositive
curvature. In this paper we study circles on a quaternion projective space and
on a quaternion hyPerbolic sPace, and show that the similar properties hold as
for circles on complex space forms.

In the study of circles on complex space forms, complex torsion $\theta=\langle X, JY\rangle$ ,

where $J$ is the complex structure, for a circle plays an important role. On a
complex projective space, every circle with $\theta=0,$ $\pm 1$ is closed, but when $0<$

$|\theta|<1$ we have closed circles and open circles, just like geodesics on a torus.
On a complex hyperbolic space, there exist a bound $\kappa_{\theta}$ for each $\theta$ such that
circles with complex torsion $\theta$ are unbounded if $\kappa\leqq\kappa_{\theta}$ and bounded if $\kappa>\kappa_{\theta}$ .
AS a corresponding invariant for circles on a quaternion Kahler manifold $M$, we
define the structure torsion $\Theta$ . For a circle $\gamma$ on $M$ with associated unit vector
fields $X,$ $Y$ , we set $\Theta$ as the norm of the projected vector Proj $(X_{t})$ of $X_{t}$ onto
the 1-dimensional quaternion subspace{ $Y_{t}\cdot\epsilon|\epsilon$ is a quaternion} (see for detail
\S 2). This plays the same role as the complex torsion for circles on a K\"ahler

manifold. By using the Hopf fibration, we take a horizontal lift of a circle
on a quaternionic space form. Under the identification of the algebra of quater-
nions with 2-dimensional complex vector sPace, we find it satisfies linear
differential equations. By a usual method, computing eigenvalues and eigen-
vectors of associated matrices, we solve them and give explicit expressions of
circles. With the aid of these expressions we can show some fundamental
feature of them.
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