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Introduction.

One of the old questions about exceptional minimal sets of codimension-one
$C^{2}$-foliations of compact manifolds reads (compare [La]): Is the Lebesgue
measure $|\mathscr{M}|$ of any exceptional minimal set ,St equal to $0$ ? The answer in
general is still unknown. The class of Markov minimal sets was introduced
by John Cantwell and Lawrence Conlon [CC] in the context of this question.
Among the other results, they proved that $|\mathscr{M}|=0$ if $\mathscr{M}$ is a Markov exceptional
minimal set. The same result in the particular case of a Markov exceptional
minimal set with holonomy generated by two maps defined on a common interval
was obtained in [Mat].

In $[LaW]$ , while studying relations between different invariants describing
the dynamics of foliations, the authors observed that the question about the
Hausdorff dimension $\dim_{H}$ of exceptional minimal sets is also of some interest.
Since the inequality

(1) $\dim_{H}$ (.SJt) $<\dim M$ ,

$M$ being the foliated manifold, implies that .fiit $|=0$ , Markov exceptional minimal
sets seem to be good candidates to satisfy (1). In fact, this is our result here.

THEOREM. If $\mathscr{M}$ is a Markov excePtional minimal set of a codimenston-one
$C^{2}$-foliation $\mathscr{F}$ of a compact manifold $M$, then $\mathscr{M}$ satisfies inequality (1).

The Theorem follows immediately from the description of Markov excep-
tional minimal sets given in [CC] and the following.

PROPOSITION. If $\Gamma$ is a finitely generated Markov PseudogrouP of local $C^{2}-$

diffeomorphisms of the real line $R$ and $Z_{0}$ is its Markov invariant set, then

(1) $\dim_{H}(Z_{0})<1$ .

The idea of the proof of the Proposition is very similar to that of Theorem
3 in [CC]. We use several preparatory Lemmas of [CC] as well as some subtle
estimates of [Mat]. However, we believe that the result itself as well as


