Hausdorff dimension of Markov invariant sets

By Paweł WALCZAK

(Received Mar. 24, 1994)

Introduction.

One of the old questions about exceptional minimal sets of codimension-one C^2 -foliations of compact manifolds reads (compare [La]): Is the Lebesgue measure $|\mathcal{M}|$ of any exceptional minimal set \mathcal{M} equal to 0? The answer in general is still unknown. The class of Markov minimal sets was introduced by John Cantwell and Lawrence Conlon [CC] in the context of this question. Among the other results, they proved that $|\mathcal{M}|=0$ if \mathcal{M} is a Markov exceptional minimal set. The same result in the particular case of a Markov exceptional minimal set with holonomy generated by two maps defined on a common interval was obtained in [Mat].

In [LaW], while studying relations between different invariants describing the dynamics of foliations, the authors observed that the question about the Hausdorff dimension \dim_H of exceptional minimal sets is also of some interest. Since the inequality

(1)
$$\dim_H(\mathcal{M}) < \dim M,$$

M being the foliated manifold, implies that $|\mathcal{M}|=0$, Markov exceptional minimal sets seem to be good candidates to satisfy (1). In fact, this is our result here.

THEOREM. If \mathcal{M} is a Markov exceptional minimal set of a codimension-one C^2 -foliation \mathcal{F} of a compact manifold M, then \mathcal{M} satisfies inequality (1).

The Theorem follows immediately from the description of Markov exceptional minimal sets given in [CC] and the following.

PROPOSITION. If Γ is a finitely generated Markov pseudogroup of local C^2 diffeomorphisms of the real line \mathbf{R} and Z_0 is its Markov invariant set, then

(1) $\dim_H(Z_0) < 1.$

The idea of the proof of the Proposition is very similar to that of Theorem 3 in [CC]. We use several preparatory Lemmas of [CC] as well as some subtle estimates of [Mat]. However, we believe that the result itself as well as