Expansion growth of smooth codimension-one foliations

By Shinji EGASHIRA

(Received Apr. 6, 1993) (Revised Mar. 23, 1994)

0. Introduction.

The entropy of foliations is defined by Ghys, Langevin and Walczak $([\mathbf{G-L-W}])$ as follows. Let \mathcal{F} be a codimension q foliation of class C^0 on a compact manifold M. Fixing a finite foliation cover \mathcal{U} of (M, \mathcal{F}) , we obtain the holonomy pseudogroup \mathcal{H} of local homeomorphisms of \mathbb{R}^q induced by \mathcal{U} . We define an integer $s_n(\varepsilon)$ $(n \in \mathbb{N}, \varepsilon > 0)$ to be the maximum cardinality of (n, ε) -separating sets with respect to the holonomy pseudogroup \mathcal{H} . Then $s_n(\varepsilon)$ is monotone increasing on n and monotone decreasing on ε . The entropy $h(\mathcal{F}, \mathcal{U})$ of the foliation \mathcal{F} is defined by the following formula:

 $h(\mathcal{F}, \mathcal{U}) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log s_n(\varepsilon).$

When we fix a sufficiently small positive real number ε , we notice that the monotone increasing map $s_n(\varepsilon)$ with respect to *n* represents the degree of the expansion of the foliation. In [E1], we considered the growth type of $s_n(\varepsilon)$ defined in the growth type set which is an extension of the usual growth type set (cf. [H-H2]) and we proved that the growth type of $s_n(\varepsilon)$ depends only on (M, \mathcal{F}) . Therefore it becomes a topological invariant for foliations. We call it the *expansion growth* of (M, \mathcal{F}) . By computing the expansion growth of several typical codimension 1 foliation of class C^0 takes uncountably many values.

In this paper, we compute the expansion growth of codimension 1 foliations of class C^2 . The main result of this paper is the following.

THEOREM. Let \mathcal{F} be a transversely oriented codimension 1 foliation of class C^2 on a compact manifold M. Let K be an \mathcal{F} -saturated set.

- (1) If \overline{K} has a resilient leaf, then $\eta(K) = [e^n]$.
- (2) If \overline{K} has no resilient leaf and $\operatorname{level}(K) < \infty$, then $\eta(K) = [n^{\operatorname{level}(K)}]$.
- (3) Otherwise, $\eta(K) = [1, n, n^2, \cdots]$.

Here $\eta(K)$ means the expansion growth of (M, \mathcal{F}) on K and the notation $[\cdot]$ means the growth type defined in section 1 and level(K) means supremum