A class of Riemannian manifolds with integrable geodesic flows

By Kazuo YAMATO

(Received Dec. 24, 1993)

Introduction.

The purpose of the present paper is to introduce a notion of geodesic flows simple integrability. In a word, a simply integrable geodesic flow is a geodesic flow which can be integrated by a single quadratic function. A remarkable property of simple integrability is the duality: To a Riemannian manifold with simply integrable geodesic flow, there corresponds, through certain conformal change of the metric, such another Riemannian manifold. To be more precise, let (M, g) be an *n*-dimensional Riemannian manifold $(n \ge 2)$. For a tensor field ϵ of type (1, 1) on M such that the determinant $\sigma_n(\epsilon)$ is positive on M, we introduce tensor fields ϵ_p of type (1, 1) as follows:

$$e_p = \sigma_n(\ell)^{-(p-1)/(n-1)} \sum_{s=0}^{p-1} (-1)^s \sigma_s(\ell) \ell^{p-s}, \qquad p=1, \dots, n.$$

Here we view ι as endomorphisms of tangent spaces, ι^{p-s} are the compositions iterated p-s times, $\sigma_0(\iota)=1$, and $\sigma_s(\iota)$ denote the elementary symmetric polynomials of the eigenvalues of ι , of degree s.

DEFINITION. We say that the geodesic flow of (M, g) is simply integrable if there exists a symmetric tensor field ι of type (1, 1) with $\sigma_n(\iota) > 0$ such that the *n* functions f_p on T(M) defined by $f_p(X) = g(\iota_p(X), X), p=1, \dots, n$, form a complete involutive set, i.e., are functionally independent and every Poisson bracket $\{f_p, f_q\}$ vanishes. We then call ι the generating tensor field. Note that simple integrability implies complete integrability in Liouville's sense, because $f_n(X) = (-1)^{n+1}g(X, X)$.

The Riemannian manifolds with simply integrable geodesic flows have the following characteristic property.

MAIN THEOREM. Suppose that the geodesic flow of (M, g) is simply integrable with generating tensor field ι . Let $\tilde{g} = \sigma_n(\iota)^{-1/(n-1)}g$ be the conformal change of the metric. Then the geodesic flow of (M, \tilde{g}) is simply integrable, and the generating tensor field is given by ι^{-1} .