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Introduction.

In the previous papers [7, 8], we determined the cuspidal class numbers of
the modular curves X,(p™) for prime numbers p+2, 3. The purpose of this
paper is to determine the cuspidal class number of the modular curve X,(3™).
Let h’ be the number obtained by the substitution of 3 for p in the cuspidal
class number formula for the case p+2,3 ([8 Theorem 7.1, Theorem 8.1]).
Let h,(3™) be the cuspidal class number of the curve X,(3"). Then our main
results (Theorem 3.1, Theorem 4.1) show h,(3™=~h’/3 if m=2. (If m=1, then
hi(3)=h’/3*=1.) As is well known, the cuspidal divisor class groups of the
modular curves are finite (Manin [5], Drinfeld [1]). As far as the author
knows, the (full) cuspidal class numbers are determined in the following cases
of modular curves. Let p be a prime number #2, 3. Ogg [6] determined the
cuspidal class number of the modular curve X,(p). Kubert-Lang [3, 4] deter-
mined the cuspidal class number of the modular curve X(p"). Takagi [7, 8]
determined the cuspidal class number of the modular curve X,(»™). (Klimek
[2], Kubert-Lang [3,4] and Yu [10] determined the order of a certain sub-
group of the cuspidal divisor class group of the modular curve X;(N).)

The contents of this paper are the following. In Section 1, we summarize
some results and definitions of [8, Section 1-5]. In [8], we assumed p+2, and
the assumption p+#3 was used only in Section 6-8. So the results of this sec-
tion hold for all p=2. Here we define modified Siegel functions, construct
modular units on the curve X,(p™), embed the cuspidal divisor group into a
ring R, and define a special element § of the algebra R®Q. In Section 2, we
determine the group of modular units on the curve X;(3™) precisely (Theorem
2.2). In Section 3, we determine the principal divisor group as a subgroup of
the ring R, which is expressed as 1,60 where I, is a subgroup of K. In Sec-
tions 3 and 4, we calculate the cuspidal class number of the curves X,(3*") and
X,(3%*1), respectively (Theorem 3.1, Theorem 4.1). In the calculation, we use



