The cuspidal class number formula for the modular curves $X_{1}\left(3^{m}\right)$

Dedicated to Professor Hideo Shimizu on his 60th birthday

By Toshikazu Takagi

(Received Oct. 15, 1992)
(Revised Dec. 20, 1993)

Introduction.

In the previous papers [7,8], we determined the cuspidal class numbers of the modular curves $X_{1}\left(p^{m}\right)$ for prime numbers $p \neq 2$, 3 . The purpose of this paper is to determine the cuspidal class number of the modular curve $X_{1}\left(3^{m}\right)$. Let h^{\prime} be the number obtained by the substitution of 3 for p in the cuspidal class number formula for the case $p \neq 2,3$ ([8, Theorem 7.1, Theorem 8.1]). Let $h_{1}\left(3^{m}\right)$ be the cuspidal class number of the curve $X_{1}\left(3^{m}\right)$. Then our main results (Theorem 3.1, Theorem 4.1) show $h_{1}\left(3^{m}\right)=h^{\prime} / 3$ if $m \geqq 2$. (If $m=1$, then $h_{1}(3)=h^{\prime} / 3^{2}=1$.) As is well known, the cuspidal divisor class groups of the modular curves are finite (Manin [5], Drinfeld [1]). As far as the author knows, the (full) cuspidal class numbers are determined in the following cases of modular curves. Let p be a prime number $\neq 2,3$. Ogg [6] determined the cuspidal class number of the modular curve $X_{0}(p)$. Kubert-Lang [3,4] determined the cuspidal class number of the modular curve $X\left(p^{n}\right)$. Takagi [7, 8] determined the cuspidal class number of the modular curve $X_{1}\left(p^{m}\right)$. (Klimek [2], Kubert-Lang [3,4] and $\mathrm{Yu}[10]$ determined the order of a certain subgroup of the cuspidal divisor class group of the modular curve $X_{1}(N)$.)

The contents of this paper are the following. In Section 1, we summarize some results and definitions of [8, Section 1-5]. In [8], we assumed $p \neq 2$, and the assumption $p \neq 3$ was used only in Section 6-8. So the results of this section hold for all $p \neq 2$. Here we define modified Siegel functions, construct modular units on the curve $X_{1}\left(p^{m}\right)$, embed the cuspidal divisor group into a ring R, and define a special element θ of the algebra $R \otimes \boldsymbol{Q}$. In Section 2, we determine the group of modular units on the curve $X_{1}\left(3^{m}\right)$ precisely (Theorem 2.2). In Section 3, we determine the principal divisor group as a subgroup of the ring R, which is expressed as $I_{4} \theta$ where I_{4} is a subgroup of R. In Sections 3 and 4, we calculate the cuspidal class number of the curves $X_{1}\left(3^{2 n}\right)$ and $X_{1}\left(3^{2 n+1}\right)$, respectively (Theorem 3.1, Theorem 4.1). In the calculation, we use

