The $W^{k, p}$-continuity of wave operators for Schrödinger operators

Dedicated to Professor S.T. Kuroda on his sixtieth birthday

By Kenji Yajima

(Received June 3, 1993)
(Revised Nov. 25, 1993)

1. Introduction, Theorems.

For the pair of Schrödinger operators $H_{0}=D_{1}^{2}+\cdots+D_{m}^{2}$ and $H=H_{0}+V$, where $D_{j}=-i \partial / \partial x_{j}, j=1, \cdots, m$, and V is the multiplication operator with the real valued function $V(x)$, the wave operators $W_{ \pm}=W_{ \pm}\left(H, H_{0}\right)$ are defined by

$$
\begin{equation*}
W_{ \pm}=s-\lim _{t \rightarrow \pm \infty} e^{i t H} e^{-i t H_{0}}, \tag{1.1}
\end{equation*}
$$

where s-indicates the strong limit in $L^{2}\left(\boldsymbol{R}^{m}\right)$. In this paper, we prove under suitable conditions on $V(x)$ that $W_{ \pm}$are bounded in the Sobolev spaces $W^{k, p}\left(\boldsymbol{R}^{m}\right)$ for any $1 \leqq p \leqq \infty$ and $k=0,1, \cdots, l$. The merit of the wave operators is that they intertwine the part H_{c} of H on the continuous spectral subspace $L_{c}^{2}(H)$ and $H_{0}: H_{c}=W_{ \pm} H_{0} W_{ \pm}^{*}$ on $L_{c}^{2}(H)$. Hence the $W^{k, p}\left(\boldsymbol{R}^{m}\right)$-boundedness of $W_{ \pm}$implies that the functions $f\left(H_{0}\right)$ and $f(H) P_{c}(H), P_{c}(H)$ being the orthogonal projection onto $L_{c}^{2}(H)$, have equivalent operator norms from $W^{k, p}\left(\boldsymbol{R}^{m}\right)$ to $W^{k^{\prime}, q}\left(\boldsymbol{R}^{m}\right)$ for any $1 \leqq p, q \leqq \infty$ and $k, k^{\prime}=0,1, \cdots, l$:

$$
\begin{align*}
C_{1}\left\|f\left(H_{0}\right)\right\|_{B\left(W^{k}, p\right.}, W^{\left.k^{\prime}, q\right)} & \leqq\left\|f(H) P_{c}(H)\right\|_{B\left(W^{k}, p\right.}, W^{k^{\prime}, q_{)}} \\
& \leqq C_{2}\left\|f\left(H_{0}\right)\right\|_{B\left(W^{k}, p^{w}, W^{k^{\prime}}, q\right)}, \tag{1.2}
\end{align*}
$$

where the constants are independent of f. We shall apply (1.2) to obtain, among others, the $L^{p}-L^{q}$ estimates for the propagators of the time dependent Schrödinger equations $i \partial u / \partial t=H u$ and of the wave or Klein-Gordon equations with potentials $\partial^{2} u / \partial t^{2}+H u+\mu^{2} u=0$, and the "Fourier multiplier theorems" for the generalized eigenfunction expansions associated with H.

We assume that $V(x)$ satisfies the following assumption, where \mathscr{T} is the Fourier transform, $\langle x\rangle=\left(1+|x|^{2}\right)^{1 / 2}, l \geqq 0$ is a fixed integer, and $m_{*}=(m-1)$ $\cdot /(m-2)$. For multi-indices $\alpha=\left(\alpha_{1}, \cdots, \alpha_{m}\right), D^{\alpha}=D_{1}^{\alpha_{1}} \cdots D_{m}^{\alpha_{m}}$ and $|\alpha|=\alpha_{1}+\cdots+\alpha_{m}$.

ASSUMPTION 1.1. $V(x)$ is a real valued function on $\boldsymbol{R}^{m}, m \geqq 3$, such that for any $|\alpha| \leqq l \mathcal{F}\left(\langle x\rangle^{\sigma} D^{\alpha} V\right) \in L^{m *}\left(\boldsymbol{R}^{m}\right)$ for some $\sigma>2 / m_{*}$ and satisfies one of the

[^0]
[^0]: This research was partially supported by Grant-in-Aid for Scientific Research (No. 05302007), Ministry of Education, Science and Culture.

