Ricci curvature, diameter and optimal volume bound

By Jyh-Yang WU

(Received June 12, 1993)
(Revised Nov. 22, 1993)

§ 1. Motivation and main results.

It is well known that a complete Riemannian n-manifold M with the Ricci curvature $\operatorname{Ric}(M) \geqq(n-1) k$ and the diameter $d(M) \leqq D$ has the volume bounded above by the volume $\tilde{v}_{k}(D)$ of a D-ball in the simply connected space form M_{k}^{n} with the constant sectional curvature k. In other words, if we rescale and normalize the metric so that $d(M)=\pi$ and consider the class \boldsymbol{M}_{k} of all closed Riemannian n-manifold with $\operatorname{Ric}(M) \geqq(n-1) k$ and $d(M)=\pi$, then the volume defines a function on \boldsymbol{M}_{k} :

$$
\text { vol }: \boldsymbol{M}_{k} \longrightarrow \boldsymbol{R}^{+}
$$

with the range in the interval $\left(0, \tilde{v}_{k}(\pi)\right]$. Note that the Myers theorem implies that k must be smaller than or equal to 1 since $d(M)=\pi$.

For $k=1$, the maximal diameter sphere theorem of Cheng [Ch] implies that \boldsymbol{M}_{k} contains only one element, the n-sphere with its canonical metric can. Hence the range of vol on M_{1} contains the single value $\tilde{v}_{1}(\pi)$. To see that there is no positive lower bound on the function vol defineded on \boldsymbol{M}_{k} for $k \leqq 0$, one can consider the flat tori: $S^{1}(\varepsilon) \times T^{n-1}, \varepsilon>0$ where $S^{1}(\varepsilon)$ is the circle with radius ε in \boldsymbol{R}^{2} and T^{n-1} is a flat ($n-1$)-torus. For positive $k<1$, one can consider the suspension M_{ε} of an ($n-1$)-sphere, S_{ε}^{n-1}, in \boldsymbol{R}^{n} with radius $\varepsilon<1$. Namely, $M_{\varepsilon}=$ $S_{\varepsilon}^{n-1} \times \sin [0, \pi]$. Note that M_{ε} is the n-sphere S^{n}. Then smooth the two singular points and rescale the metric to obtain a metric g_{ε} on M_{ε} with $d\left(g_{\varepsilon}\right)$ $=\pi$ and $\min \operatorname{Ric}\left(g_{\varepsilon}\right) \geqq 1-\eta_{1}(\varepsilon)$ and $\operatorname{vol}\left(g_{\varepsilon}\right) \leqq \eta_{2}(\varepsilon)$ where the positive functions $\eta_{1}(\varepsilon)$ and $\eta_{2}(\varepsilon)$ approach zero as ε goes to zero. See also [GP] for a similar construction. This indicates that the lower bound of vol on \boldsymbol{M}_{k} is also zero for positive $k<1$.

For the upper bound of vol on \boldsymbol{M}_{k}, one may ask if the upper bound $\tilde{v}_{k}(\pi)$ is obtainable by some Riemannian n-manifold in \boldsymbol{M}_{k} ? The answer is yes only when $k=1 / 4$ or 1 . They are obtained by ($\boldsymbol{R} P^{n}, 4 c a n$) and (S^{n}, can), respectively. Therefore it is natural to ask the following

Partially supported by an N.S.C. grant, NSC 84-2121-M-194-003, Taiwan.

