Ricci curvature, diameter and optimal volume bound

By Jyh-Yang WU

(Received June 12, 1993) (Revised Nov. 22, 1993)

§ 1. Motivation and main results.

It is well known that a complete Riemannian n-manifold M with the Ricci curvature $Ric(M) \ge (n-1)k$ and the diameter $d(M) \le D$ has the volume bounded above by the volume $\tilde{v}_k(D)$ of a D-ball in the simply connected space form M_k^n with the constant sectional curvature k. In other words, if we rescale and normalize the metric so that $d(M) = \pi$ and consider the class M_k of all closed Riemannian n-manifold with $Ric(M) \ge (n-1)k$ and $d(M) = \pi$, then the volume defines a function on M_k :

$$vol: M_k \longrightarrow R^+$$

with the range in the interval $(0, \tilde{v}_k(\pi)]$. Note that the Myers theorem implies that k must be smaller than or equal to 1 since $d(M) = \pi$.

For k=1, the maximal diameter sphere theorem of Cheng [Ch] implies that M_k contains only one element, the n-sphere with its canonical metric can. Hence the range of vol on M_1 contains the single value $\tilde{v}_1(\pi)$. To see that there is no positive lower bound on the function vol defineded on M_k for $k \leq 0$, one can consider the flat tori: $S^1(\varepsilon) \times T^{n-1}$, $\varepsilon > 0$ where $S^1(\varepsilon)$ is the circle with radius ε in \mathbb{R}^2 and T^{n-1} is a flat (n-1)-torus. For positive k < 1, one can consider the suspension M_{ε} of an (n-1)-sphere, S_{ε}^{n-1} , in \mathbb{R}^n with radius $\varepsilon < 1$. Namely, $M_{\varepsilon} = S_{\varepsilon}^{n-1} \times_{\sin} [0, \pi]$. Note that M_{ε} is the n-sphere S^n . Then smooth the two singular points and rescale the metric to obtain a metric g_{ε} on M_{ε} with $d(g_{\varepsilon}) = \pi$ and $\min Ric(g_{\varepsilon}) \geq 1 - \eta_1(\varepsilon)$ and $vol(g_{\varepsilon}) \leq \eta_2(\varepsilon)$ where the positive functions $\eta_1(\varepsilon)$ and $\eta_2(\varepsilon)$ approach zero as ε goes to zero. See also [GP] for a similar construction. This indicates that the lower bound of vol on M_k is also zero for positive k < 1.

For the upper bound of vol on M_k , one may ask if the upper bound $\tilde{v}_k(\pi)$ is obtainable by some Riemannian *n*-manifold in M_k ? The answer is yes only when k=1/4 or 1. They are obtained by $(RP^n, 4can)$ and (S^n, can) , respectively. Therefore it is natural to ask the following

Partially supported by an N.S.C. grant, NSC 84-2121-M-194-003, Taiwan.