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1. Introduction.

The aim of this paper is to prove a uniqueness theorem for stable minimal
surfaces $X:Barrow R^{3}$ of the type of the disk which are stationary in a boundary
configuration $\langle\Gamma, S\rangle$ consisting of a surface $S$ and of a Jordan arc $\Gamma$ with end-
points on $S$ . The existence of such surfaces for a prescribed configuration
$\langle\Gamma, S\rangle$ was established by Courant under fairly general assumptions on $\Gamma$ and
$S$ , while H. Lewy proved the first basic results on boundary regularity of
minimizers. A detailed investigation of this problem with regard to existence,
boundary regularity and properties of the free trace can be found in the recent
monograph [3]; cf. also [2] and [9].

It is well-known that in general a configuration $\langle\Gamma, S\rangle$ bounds more than
one stationary minimal surface of disk-type and even more than one minimizer.
In fact, uniqueness seems to be a rather rare phenomenon, and not much is
known about as to when it will occur. To our knowledge the question of uni-
queness of minimal surfaces solving a free boundary value problem was only
studied in the papers $[4]-[6]$ . Here we want to prove a restricted uniqueness
result applying only to stable minimal surfaces, whereas [5] and [6] require
no restrictions of this kind. On the other hand, the method of this paper,
derived from ideas of [11], applies to more general configurations $\langle\Gamma, S\rangle$ than
[5] and [6], and also applications to $H$-surfaces seem possible. In [7] the
results and techniques of this paper will be used to study existence and uni-
queness for a singular problem, of which [4] is in some sense a limit case.

Let us now fix some notation to be used in the sequel. We denote by

$X(u, v)=(X^{1}(u, v),$ $X^{2}(u, v),$ $X^{3}(u, v))$

a minimal surface defined on the parameter domain $B=\{(u, v)\in R^{2}$ : $u^{2}+\iota^{2}<1$ ,

$v>0\}$ . This is to say, $X:Barrow R^{3}$ is a harmonic mapping,

(1.1) $\Delta X=0$ ,


