Uniqueness of stable minimal surfaces with partially free boundaries

Dedicated to Robert Finn on the occasion of his seventieth birthday

By Stefan HILDEBRANDT and Friedrich SAUVIGNY

(Received Oct. 12, 1993)

1. Introduction.

The aim of this paper is to prove a uniqueness theorem for stable minimal surfaces $X: B \to \mathbb{R}^3$ of the type of the disk which are stationary in a boundary configuration $\langle \Gamma, S \rangle$ consisting of a surface S and of a Jordan arc Γ with endpoints on S. The existence of such surfaces for a prescribed configuration $\langle \Gamma, S \rangle$ was established by Courant under fairly general assumptions on Γ and S, while H. Lewy proved the first basic results on boundary regularity of minimizers. A detailed investigation of this problem with regard to existence, boundary regularity and properties of the free trace can be found in the recent monograph [3]; cf. also [2] and [9].

It is well-known that in general a configuration $\langle \Gamma, S \rangle$ bounds more than one stationary minimal surface of disk-type and even more than one minimizer. In fact, uniqueness seems to be a rather rare phenomenon, and not much is known about as to when it will occur. To our knowledge the question of uniqueness of minimal surfaces solving a free boundary value problem was only studied in the papers [4]-[6]. Here we want to prove a restricted uniqueness result applying only to stable minimal surfaces, whereas [5] and [6] require no restrictions of this kind. On the other hand, the method of this paper, derived from ideas of [11], applies to more general configurations $\langle \Gamma, S \rangle$ than [5] and [6], and also applications to *H*-surfaces seem possible. In [7] the results and techniques of this paper will be used to study existence and uniqueness for a singular problem, of which [4] is in some sense a limit case.

Let us now fix some notation to be used in the sequel. We denote by

$$X(u, v) = (X^{1}(u, v), X^{2}(u, v), X^{3}(u, v))$$

a minimal surface defined on the parameter domain $B = \{(u, v) \in \mathbb{R}^2 : u^2 + v^2 < 1, v > 0\}$. This is to say, $X : B \to \mathbb{R}^3$ is a harmonic mapping,

$$\Delta X = 0,$$