On energy decay-nondecay problems for wave equations with nonlinear dissipative term in \mathbb{R}^N

By Kiyoshi MOCHIZUKI and Takahiro MOTAI

(Received Sept. 13, 1993)

1. Introduction.

In this paper we are concerned with the energy decay and nondecay problems of solutions to the wave equation

$$w_{tt} - \Delta w + \lambda w + \beta(x, t, w_t) w_t = 0, \qquad (x, t) \in \mathbf{R}^N \times (0, \infty)$$
(1.1)

with initial data

$$w(x, 0) = w_1(x)$$
 and $w_t(x, 0) = w_2(x)$, $x \in \mathbb{R}^N$. (1.2)

Here $w_t = \partial w/\partial t$, $w_{tt} = \partial^2 w/\partial t^2$, Δ is the N-dimensional Laplacian, $\lambda \ge 0$ and $\beta(x, t, w_t)w_t$ represents a dissipative term. In the following it is restricted to the power nonlinearity

$$\beta(x, t, w_t(x, t)) = b(x, t) |w_t(x, t)|^{\rho - 1}$$
(1.3)

with $b(x, t) \ge 0$ and $\rho > 1$, or to the cubic convolution

$$\beta(x, t, w_t(x, t)) = (V_{\gamma} * w_t(t)^2)(x) = \int_{\mathbb{R}^N} V_{\gamma}(x - y) w_t(y, t)^2 dy \qquad (1.4)$$

with $V_{\gamma}(x) = |x|^{-\gamma}$ (0< γ <N). In order to guarantee regularities of solutions, we require in (1.3)

$$|b_t(x, t)| + |\nabla b(x, t)| \le Cb(x, t)$$
(1.5)

for some C>0, where $\nabla f = (\partial_1 f, \dots, \partial_N f)$, $\partial_j = \partial/\partial x_j$.

We use the following notation: L^p $(1 \le p \le \infty)$ is the usual space of all L^p functions in \mathbb{R}^N ; If X is a Banach space and $I \subset \mathbb{R}$ is an interval, then by C(I; X) and $L^p(I; X)$ we mean the space of all X-valued continuous and L^p functions on I, respectively; H^k $(k=1, 2, \cdots)$ is the Sobolev space with norm

$$\|f\|_{H^{k}} = \left\{ \sum_{|\alpha| \leq k} \int_{R^{N}} |\nabla^{\alpha} f(x)|^{2} dx \right\}^{1/2} < \infty,$$

where α are the multi-indices; E is the space of pairs $f = \{f_1, f_2\}$ of functions